Thermal Stresses and Temperature Control of Mass Concrete


Book Description

Methods of controlling mass concrete temperatures range from relatively simple to complex and from inexpensive too costly. Depending on a particular situation, it may be advantageous to use one or more methods over others. Based on the author's 50 years of personal experience in designing mass concrete structures, Thermal Stresses and Temperature Control of Mass Concrete provides a clear and rigorous guide to selecting the right techniques to meet project-specific and financial needs. New techniques such as long time superficial thermal insulation, comprehensive temperature control, and MgO self-expansive concrete are introduced. - Methods for calculating the temperature field and thermal stresses in dams, docks, tunnels, and concrete blocks and beams on elastic foundations - Thermal stress computations that take into account the influences of all factors and simulate the process of construction - Analytical methods for determining thermal and mechanical properties of concrete - Formulas for determining water temperature in reservoirs and temperature loading of arched dams - New numerical monitoring methods for mass and semi-mature aged concrete




Thermal Cracking in Concrete at Early Ages


Book Description

Restraint and intrinsic stresses in concrete at early ages are vitally important for concrete structures which must remain free of water-permeable cracks, such as water-retaining structures, tunnel linings, locks and dams. The development of hydration heat, stiffness and strength, also the degree of restraint and, especially for high-strength concrete, non-thermal effects, are decisive for sensitivity to cracking. Determining thses stresses in the laboratory and in construction components has led to a clearer understanding of how they develop and how to optimize mix design, temperature and curing conditions. New testing equipment has enabled the effects of all the important parameters to be qualified and more reliable models for predictiong restraint stresses to be developed. Thermal Cracking in Conrete at Early Ages contains 56 contributions by leading international specialists presented at the RILEM Symposium held in October 1994 at the Technical University of Munich. It will be valuable for construction and site engineers, concrete technologists and scientists.




Thermal Cracking of Massive Concrete Structures


Book Description

This book provides a State of the Art Report (STAR) produced by RILEM Technical Committee 254-CMS ‘Thermal Cracking of Mas-sive Concrete Structures’. Several recent developments related to the old problem of understanding/predicting stresses originated from the evolution of the hydration of concrete are at the origin of the creation this technical committee. Having identified a lack in the organization of up-to-date scientific and technological knowledge about cracking induced by hydration heat effects, this STAR aims to provide both practitioners and scientists with a deep integrated overview of consolidated knowledge, together with recent developments on this subject.




Guide to Cold Weather Concreting


Book Description




Prevention of Thermal Cracking in Concrete at Early Ages


Book Description

An important new report from the RILEM Technical Committee 119. This book presents models and methods to determine thermal stresses and cracking risks in concrete. The possible influences on and causes of thermal cracking of concrete are discussed and cases of practical measures for avoiding cracking are detailed.




Early-age Thermal Crack Control in Concrete


Book Description

This guide provides a method for estimating the magnitude of crack inducing strain and the risk of cracking; and where cracking will occur guidance is provided on the design of reinforcement to control crack widths.




The Finite Element Method


Book Description

A comprehensive review of the Finite Element Method (FEM), this book provides the fundamentals together with a wide range of applications in civil, mechanical and aeronautical engineering. It addresses both the theoretical and numerical implementation aspects of the FEM, providing examples in several important topics such as solid mechanics, fluid mechanics and heat transfer, appealing to a wide range of engineering disciplines. Written by a renowned author and academician with the Chinese Academy of Engineering, The Finite Element Method would appeal to researchers looking to understand how the fundamentals of the FEM can be applied in other disciplines. Researchers and graduate students studying hydraulic, mechanical and civil engineering will find it a practical reference text.




Recent Developments in Sustainable Infrastructure


Book Description

This book comprises select peer-reviewed proceedings of the International Conference on Recent Developments in Sustainable Infrastructure (ICRDSI) 2019. The topics span over all major disciplines of civil engineering with regard to sustainable development of infrastructure and innovation in construction materials, especially concrete. The book covers numerical and analytical studies on various topics such as composite and sandwiched structures, green building, groundwater modeling, rainwater harvesting, soil dynamics, seismic resistance and control of structures, waste management, structural health monitoring, and geo-environmental engineering. This book will be useful for students, researchers and professionals working in sustainable technologies in civil engineering.




Structural Health Monitoring and Engineering Structures


Book Description

The book presents the select proceedings of International Conference on Structural Health Monitoring and Engineering Structures (SHM&ES) 2020. It brings together different applied and technological aspects of structural health monitoring. The main topics covered in this book include damage assessment, structural health monitoring, engineering fracture mechanics, Inverse problem using optimization techniques, machine learning, deep learning, Artificial intelligent and non-destructive evaluation. It will be a reference for professionals and students in the areas of civil engineering, applied natural sciences and engineering management.




Durability and Sustainability of Concrete


Book Description

This book provides practicing engineers with a step by step approach for making durable concrete with optimum use of the local materials available within the various regions of the United States. It further includes actual concrete mixture proportions for high performance concrete for strength and durability under various aggressive environments based on the author’s experience in the field, and support this with illustrative case studies. Examples for concrete mixture proportions, based on the current industry practice and standards, are highlighted to assist engineers in meeting the intended performance requirements (for specific environment conditions) for durable concrete. Covering an important topic for the construction and building materials industries, this book delivers the most up-to-date industry practices and advances in concrete construction from the perspective of a practicing engineer with over 40 year experience. Maximizes practicing engineers’ understanding of best design and construction practices in fabricating, delivery, and installation of concrete, consistent with current knowledge on concrete durability Discusses quality control and testing requirements during design and construction, including mixing, production, and placement of concrete and tolerances for slump and air content Emphasizes real-world examples of optimal concrete mixtures, suitable for selected service conditions and applications, based on prior successful records of projects within the US Addresses the role of innovative admixtures in concrete placement in cold weather conditions below 32F and meeting the strength and durability requirements Serves as a valuable resource for students in graduate programs