Thermodynamics, Microstructures and Plasticity


Book Description

Proceedings of the NATO Advanced Study Institute, held in Fréjus, France, September 2-13, 2002




Continuum Scale Simulation of Engineering Materials


Book Description

This book fills a gap by presenting our current knowledge and understanding of continuum-based concepts behind computational methods used for microstructure and process simulation of engineering materials above the atomic scale. The volume provides an excellent overview on the different methods, comparing the different methods in terms of their respective particular weaknesses and advantages. This trains readers to identify appropriate approaches to the new challenges that emerge every day in this exciting domain. Divided into three main parts, the first is a basic overview covering fundamental key methods in the field of continuum scale materials simulation. The second one then goes on to look at applications of these methods to the prediction of microstructures, dealing with explicit simulation examples, while the third part discusses example applications in the field of process simulation. By presenting a spectrum of different computational approaches to materials, the book aims to initiate the development of corresponding virtual laboratories in the industry in which these methods are exploited. As such, it addresses graduates and undergraduates, lecturers, materials scientists and engineers, physicists, biologists, chemists, mathematicians, and mechanical engineers.




Analysis and Computation of Microstructure in Finite Plasticity


Book Description

This book addresses the need for a fundamental understanding of the physical origin, the mathematical behavior and the numerical treatment of models which include microstructure. Leading scientists present their efforts involving mathematical analysis, numerical analysis, computational mechanics, material modelling and experiment. The mathematical analyses are based on methods from the calculus of variations, while in the numerical implementation global optimization algorithms play a central role. The modeling covers all length scales, from the atomic structure up to macroscopic samples. The development of the models ware guided by experiments on single and polycrystals and results will be checked against experimental data.







Handbook of Materials Modeling


Book Description

The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.




Plasticity and Beyond


Book Description

The book presents the latest findings in experimental plasticity, crystal plasticity, phase transitions, advanced mathematical modeling of finite plasticity and multi-scale modeling. The associated algorithmic treatment is mainly based on finite element formulations for standard (local approach) as well as for non-standard (non-local approach) continua and for pure macroscopic as well as for directly coupled two-scale boundary value problems. Applications in the area of material design/processing are covered, ranging from grain boundary effects in polycrystals and phase transitions to deep-drawing of multiphase steels by directly taking into account random microstructures.




Multiscale Modeling of Complex Materials


Book Description

The papers in this volume deal with materials science, theoretical mechanics and experimental and computational techniques at multiple scales, providing a sound base and a framework for many applications which are hitherto treated in a phenomenological sense. The basic principles are formulated of multiscale modeling strategies towards modern complex multiphase materials subjected to various types of mechanical, thermal loadings and environmental effects. The focus is on problems where mechanics is highly coupled with other concurrent physical phenomena. Attention is also focused on the historical origins of multiscale modeling and foundations of continuum mechanics currently adopted to model non-classical continua with substructure, for which internal length scales play a crucial role.




Materials Issues for Generation IV Systems


Book Description

Global warming, shortage of low-cost oil resources and the increasing demand for energy are currently controlling the world's economic expansion while often opposing desires for sustainable and peaceful development. In this context, atomic energy satisfactorily fulfills the criteria of low carbon gas production and high overall yield. However, in the absence of industrial fast-breeders the use of nuclear fuel is not optimal, and the production of high activity waste materials is at a maximum. These are the principal reasons for the development of a new, fourth generation of nuclear reactors, minimizing the undesirable side-effects of current nuclear energy production technology while increasing yields by increasing operation temperatures and opening the way for the industrial production of hydrogen through the decomposition of water. The construction and use of such reactors is hindered by several factors, including performance limitations of known structural materials, particularly if the life of the projected systems had to extend over the periods necessary to achieve low costs (at least 60 years). This book collects lectures and seminars presented at the homonymous NATO ASI held in autumn 2007 at the Institut d’Etudes Scientifiques in Cargèse, France. The adopted approach aims at improving and coordinating basic knowledge in materials science and engineering with specific areas of condensed matter physics, the physics of particle/matter interaction and of radiation damage. It is our belief that this methodology is crucially conditioning the development and the industrial production of new structural materials capable of coping with the requirements of these future reactors.




Patterns, Defects and Microstructures in Nonequilibrium Systems


Book Description

One of the most fascinating and intriguing aspects of natural phenomena is that complex systems may undergo symme try-breaking instabilities leading to pattern formation or coherent temporal behavior over macroscopic space and time scales. Therefore the understanding of why order may appear spontananeously in open systems far from equilibrium and which planforms are selected among a large manifold of possi bilities has become a major theme of research both theore- cally and experimentally. These studies, first related to fundamental questions, appear now to be of technological importance, especially for materials science problems. Effectively during the last years, the whole field of materials science experienced a complete renewal. By using techniques able to operate in strong nonequilibrium conditions and hence to escape from the constraints of equilibrium thermodynamics, totally new mate rials structures have been processed. Such techniques inclu de ion implantation, laser beam surface melting as well as electron beam heating. For example, ion implantation proces sing is able to create surfaces with compositions markedly different from the bulk, leading to materials having new electric, magnetic or chemical properties. In laser annea ling, after the tremendously rapid melting and recrystalliza tion of the sample surfaces, microstructures with superior resistance to friction, corrosion, ••• are frozen into place. Rapid solidification of alloys trigger the formation of quasi-crystalline structures. Ion beam mixing can modify the electrical properties of polymers or improve the adhesion of metallic films to ceramics.




Advanced High-Strength Steels


Book Description

Examines the types, microstructures and attributes of AHSSAlso reviews the current and future applications, the benefits, trends and environmental and sustainability issues.