Thermodynamics of Flowing Systems


Book Description

This much-needed monograph presents a systematic, step-by-step approach to the continuum modeling of flow phenomena exhibited within materials endowed with a complex internal microstructure, such as polymers and liquid crystals. By combining the principles of Hamiltonian mechanics with those of irreversible thermodynamics, Antony N. Beris and Brian J. Edwards, renowned authorities on the subject, expertly describe the complex interplay between conservative and dissipative processes. Throughout the book, the authors emphasize the evaluation of the free energy--largely based on ideas from statistical mechanics--and how to fit the values of the phenomenological parameters against those of microscopic models. With Thermodynamics of Flowing Systems in hand, mathematicians, engineers, and physicists involved with the theoretical study of flow behavior in structurally complex media now have a superb, self-contained theoretical framework on which to base their modeling efforts.




Thermodynamics of Fluids Under Flow


Book Description

Based on the authors’ successful theory for extended irreversible thermodynamics, the book analyzes the thermodynamic aspects of several phenomena induced by the flow in fluid systems.




Thermodynamics of Fluids Under Flow


Book Description

This is the second edition of the book “Thermodynamics of Fluids under Flow,” which was published in 2000 and has now been corrected, expanded and updated. This is a companion book to our other title Extended irreversible thermodynamics (D. Jou, J. Casas-Vázquez and G. Lebon, Springer, 4th edition 2010), and of the textbook Understanding non-equilibrium thermodynamics (G. Lebon, D. Jou and J. Casas-Vázquez, Springer, 2008. The present book is more specialized than its counterpart, as it focuses its attention on the non-equilibrium thermodynamics of flowing fluids, incorporating non-trivial thermodynamic contributions of the flow, going beyond local equilibrium theories, i.e., including the effects of internal variables and of external forcing due to the flow. Whereas the book's first edition was much more focused on polymer solutions, with brief glimpses into ideal and real gases, the present edition covers a much wider variety of systems, such as: diluted and concentrated polymer solutions, polymer blends, laminar and turbulent superfluids, phonon hydrodynamics and heat transport in nanosystems, nuclear collisions, far-from-equilibrium ideal gases, and molecular solutions. It also deals with a variety of situations, emphasizing the non-equilibrium flow contribution: temperature and entropy in flowing ideal gases, shear-induced effects on phase transitions in real gases and on polymer solutions, stress-induced migration and its application to flow chromatography, Taylor dispersion, anomalous diffusion in flowing systems, the influence of the flow on chemical reactions, and polymer degradation. The new edition is not only broader in scope, but more educational in character, and with more emphasis on applications, in keeping with our times. It provides many examples of how a deeper theoretical understanding may bring new and more efficient applications, forging links between theoretical progress and practical aims. This updated version expands on the trusted content of its predecessor, making it more interesting and useful for a larger audience.




The Thermodynamics of Fluid Systems


Book Description

This classic account stresses the role of time-scales in determining the nature and extent of state space, an approach that makes clear the unity of classical, kinetic, statistical, and process thermodynamics. "Superb....It has no equal....Should be read by anyone who wants to understand what thermodynamics--regarded as a branch of physics--is all about....No one concerned with thermodynamics, and not merely that of fluid systems, can afford to be without this book, be he undergraduate student, graduate student or research worker." --Journal of Fluid Mechanics/




Into the Cool


Book Description

The authors look to the laws of thermodynamics for answers to the questions of evolution, ecology, economics, and even life's origin.







Classical Thermodynamics of Fluid Systems


Book Description

This text explores the connections between different thermodynamic subjects related to fluid systems. Emphasis is placed on the clarification of concepts by returning to the conceptual foundation of thermodynamics and special effort is directed to the use of a simple nomenclature and algebra. The book presents the structural elements of classical thermodynamics of fluid systems, covers the treatment of mixtures, and shows via examples and references both the usefulness and the limitations of classical thermodynamics for the treatment of practical problems related to fluid systems. It also includes diverse selected topics of interest to researchers and advanced students and four practical appendices, including an introduction to material balances and step-by-step procedures for using the Virial EOS and the PRSV EOS for fugacities and the ASOG-KT group method for activity coefficients. The Olivera-Fuentes table of PRSV parameters for more than 800 chemical compounds and the Gmehling-Tochigi tables of ASOG interaction parameters for 43 groups are included.




Thermo-Fluid Dynamics of Two-Phase Flow


Book Description

Thermo-fluid Dynamics of Two-Phase Flow, Second Edition is focused on the fundamental physics of two-phase flow. The authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to: Nuclear reactor transient and accident analysis; Energy systems; Power generation systems; Chemical reactors and process systems; Space propulsion; Transport processes. This edition features updates on two-phase flow formulation and constitutive equations and CFD simulation codes such as FLUENT and CFX, new coverage of the lift force model, which is of particular significance for those working in the field of computational fluid dynamics, new equations and coverage of 1 dimensional drift flux models and a new chapter on porous media formulation.







One-Dimensional Compressible Flow


Book Description

One-Dimensional Compressible Flow explores the physical behavior of one-dimensional compressible flow. Various types of flow in one dimension are considered, including isentropic flow, flow through a convergent or a convergent-divergent duct with varying back pressure, flow with friction or heat transfer, and unsteady flow. This text consists of five chapters and begins with an overview of the main concepts from thermodynamics and fluid mechanics, with particular emphasis on the basic conservation equations for mass, momentum, and energy that are derived for time-dependent flow through a control volume. The chapters that follow provide a basis for understanding steady flow with area change, friction, or heat transfer. A method for solving unsteady flow problems is described in the final chapter, which also discusses the propagation of small disturbances and unsteady flow with finite changes in fluid properties. This book will be useful to senior students pursuing a degree course in mechanical engineering and to engineers in industry.