Thermoelectrics and its Energy Harvesting, 2-Volume Set


Book Description

Comprising two volumes, Thermoelectrics and Its Energy Harvesting reviews the vast improvements in technology and application of thermoelectric energy with a specific intention to reduce and reuse waste heat and improve novel techniques for the efficient acquisition and use of energy.Materials, Preparation, and Characterization in Thermoelectrics i




Advanced Thermoelectric Materials for Energy Harvesting Applications


Book Description

Advanced Thermoelectric Materials for Energy Harvesting Applications is a research-intensive textbook covering the fundamentals of thermoelectricity and the process of converting heat energy into electrical energy. It covers the design, implementation, and performance of existing and advanced thermoelectric materials. Chapters examine such topics as organic/inorganic thermoelectric materials, performance and behaviors of thermoelectric devices, and energy harvesting applications of thermoelectric devices.




Thermoelectric Materials and Devices


Book Description

Authoritative account of recent developments in thermoelectric materials and devices for power energy harvesting applications, ideal for researchers and industrialists in materials science.




Modules, Systems, and Applications in Thermoelectrics


Book Description

Comprising two volumes, Thermoelectrics and Its Energy Harvesting reviews the dramatic improvements in technology and application of thermoelectric energy with a specific intention to reduce and reuse waste heat and improve novel techniques for the efficient acquisition and use of energy. This volume, Modules, Systems and Applications in Thermoelectrics, discusses the practical, novel, and truly groundbreaking applications of thermoelectrics in a range of markets. The book details the U.S. interest in alternative energy and energy harvesting, specifically, the current efforts to use thermoelectric generators (TGs) to reduce emissions. Internationally, it expounds on the strong interest in Japan, Korea and Europe to incorporate TGs in cars to reduce fuel consumption and meet EU carbon dioxide emission targets; the European plans to build an isotopic powered thermoelectric generator; and India’s use of TG s in converting hot water from steel mills into electricity.




Energy Harvesting Technologies


Book Description

Energy Harvesting Technologies provides a cohesive overview of the fundamentals and current developments in the field of energy harvesting. In a well-organized structure, this volume discusses basic principles for the design and fabrication of bulk and MEMS based vibration energy systems, theory and design rules required for fabrication of efficient electronics, in addition to recent findings in thermoelectric energy harvesting systems. Combining leading research from both academia and industry onto a single platform, Energy Harvesting Technologies serves as an important reference for researchers and engineers involved with power sources, sensor networks and smart materials.




Thermoelectric Materials


Book Description

How can you design good thermoelectric materials? This book covers thermoelectric material concepts and synthesis techniques in particular focusing methods for enhancing current materials designs to achieve the greatest thermoelectric efficiencies. This book is ideal for researchers and advanced students of materials science, physics, and energy.




Handbook of Energy Harvesting Power Supplies and Applications


Book Description

This book describes the fundamentals and principles of energy harvesting and provides the necessary theory and background to develop energy harvesting power supplies. It explains the overall system design and gives quantitative assumptions on environmental energy. It explains different system blocks for an energy harvesting power supply and the trade-offs. The text covers in detail different energy transducer technologies such as piezoelectric, electrodynamic, and thermoelectric generators and solar cells from the material to the component level and explains the appropriate power management circuits required in these systems. Furthermore, it describes and compares storage elements such as secondary batteries and supercapacitors to select the most appropriate one for the application. Besides power supplies that use ambient energy, the book presents systems that use electromagnetic fields in the radio frequency range. Finally, it discusses different application fields and presents examples of self-powered electronic systems to illustrate the content of the preceding chapters.




Waste Energy Harvesting


Book Description

Waste Energy Harvesting overviews the latest progress in waste energy harvesting technologies, with specific focusing on waste thermal mechanical energies. Thermal energy harvesting technologies include thermoelectric effect, storage through phase change materials and pyroelectric effect. Waste mechanical energy harvesting technologies include piezoelectric (ferroelectric) effect with ferroelectric materials and nanogenerators. The book aims to strengthen the syllabus in energy, materials and physics and is well suitable for students and professionals in the fields.




The Physics of Thermoelectric Energy Conversion


Book Description

This book outlines the principles of thermoelectric generation and refrigeration from the discovery of the Seebeck and Peltier effects in the nineteenth century through the introduction of semiconductor thermoelements in the mid-twentieth century to the more recent development of nanostructured materials. It is shown that the efficiency of a thermoelectric generator and the coefficient of performance of a thermoelectric refrigerator can be related to a quantity known as the figure of merit. The figure of merit depends on the Seebeck coefficient and the ratio of the electrical to thermal conductivity. It is shown that expressions for these parameters can be derived from the band theory of solids. The conditions for favourable electronic properties are discussed. The methods for selecting materials with a low lattice thermal conductivity are outlined and the ways in which the scattering of phonons can be enhanced are described. The application of these principles is demonstrated for specific materials including the bismuth telluride alloys, bismuth antimony, alloys based on lead telluride, silicon-germanium and materials described as phonon-glass electron-crystals. It is shown that there can be advantages in using the less familiar transverse thermoelectric effects and the transverse thermomagnetic effects. Finally, practical aspects of thermoelectric generation and refrigeration are discussed. The book is aimed at readers who do not have a specialised knowledge of solid state physics.




Thermoelectrics Handbook


Book Description

Ten years ago, D.M. Rowe introduced the bestselling CRC Handbook of Thermoelectrics to wide acclaim. Since then, increasing environmental concerns, desire for long-life electrical power sources, and continued progress in miniaturization of electronics has led to a substantial increase in research activity involving thermoelectrics. Reflecting the latest trends and developments, the Thermoelectrics Handbook: Macro to Nano is an extension of the earlier work and covers the entire range of thermoelectrics disciplines. Serving as a convenient reference as well as a thorough introduction to thermoelectrics, this book includes contributions from 99 leading authorities from around the world. Its coverage spans from general principles and theoretical concepts to material preparation and measurements; thermoelectric materials; thermoelements, modules, and devices; and thermoelectric systems and applications. Reflecting the enormous impact of nanotechnology on the field-as the thermoelectric properties of nanostructured materials far surpass the performance of conventional materials-each section progresses systematically from macro-scale to micro/nano-scale topics. In addition, the book contains an appendix listing major manufacturers and suppliers of thermoelectric modules. There is no longer any need to spend hours plodding through the journal literature for information. The Thermoelectrics Handbook: Macro to Nano offers a timely, comprehensive treatment of all areas of thermoelectrics in a single, unified reference.