Thermoluminescence and Thermoluminescent Dosimetry


Book Description

First Published in 1984, this set offers a comprehensive insight into thermolumiscence. Carefully compiled and filled with a vast repertoire of notes, diagrams, and references this book serves as a useful reference for radiobiologists and physicists and other practitioners in their respective fields.




Optically Stimulated Luminescence Dosimetry


Book Description

Optically Stimulated Luminescence (OSL) has become the technique of choice for many areas of radiation dosimetry. The technique is finding widespread application in a variety of radiation dosimetry fields, including personal monitoring, environmental monitoring, retrospective dosimetry (including geological dating and accident dosimetry), space dosimetry, and many more. In this book we have attempted to synthesize the major advances in the field, covering both fundamental understanding and the many applications. The latter serve to demonstrate the success and popularity of OSL as a dosimetry method.The book is designed for researchers and radiation dosimetry practitioners alike. It delves into the detailed theory of the process from the point of view of stimulated relaxation phenomena, describing the energy storage and release processes phenomenologically and developing detailed mathematical descriptions to enable a quantitative understanding of the observed phenomena. The various stimulation modes (continuous wave, pulsed, or linear modulation) are introduced and compared. The properties of the most important synthetic OSL materials beginning with the dominant carbon-doped Al2O3, and moving through discussions of other, less-well studied but nevertheless important, or potentially important, materials. The OSL properties of the two most important natural OSL dosimetry material types, namely quartz and feldspars are discussed in depth. The applications chapters deal with the use of OSL in personal, environmental, medical and UV dosimetry, geological dating and retrospective dosimetry (accident dosimetry and dating). Finally the developments in instrumentation that have occurred over the past decade or more are described. The book will find use in those laboratories within academia, national institutes and the private sector where research and applications in radiation dosimetry using luminescence are being conducted. Potential readers include personnel involved in radiation protection practice and research, hospitals, nuclear power stations, radiation clean-up and remediation, food irradiation and materials processing, security monitoring, geological and archaeological dating, luminescence studies of minerals, etc.




Theory of Thermoluminescence and Related Phenomena


Book Description

In this book, the authors give an up-to-date account of thermoluminescence (TL) and other thermally stimulated phenomena. Although most recent experimental results of TL in different materials are described in some detail, the main emphasis in the present book is on general processes, and the approach is more theoretical. Thus the details of the possible processes which can take place during the excitation of the sample, and during its heating, are carefully analysed. The methods for analysing TL glow curves are critically discussed, and recommendations as to their application are made. Also discussed is the expected behavior of these phenomena as functions of the experimental parameters, for example, dose of excitation. The consequences of the main applications of TL (for example, radiation dosimetry) are also discussed in detail as are the similarities and dissimilarities of other thermally stimulated phenomena, and the simultaneous measurements of the latter and TL.







Thermoluminescence of Solids


Book Description

McKeever gives us a comprehensive survey of thermoluminescence, an important, versatile, and widely used experimental technique. Bringing together previously isolated specialized approaches, he stresses the importance of the solid state aspects of the phenomenon. The book contains chapters on analysis and special properties, on instrumentation, and on the variety of defect reaction - using the alkali halides and SiO2 as examples - that can take place within a material to yield thermoluminescence. Three chapters concerning applications discuss the features of the solid state reactions to expain some of the properties observed in practice.




Handbook of Thermoluminescence


Book Description

This second edition of the Handbook of Thermoluminescence enlarges on all the subjects which were treated in the first edition and adds further arguments, including the theory of thermoluminescent dose measurement, several examples concerning the kinetics parameters determination using various methods such as peak shape, isothermal decay, and so on. A special section is devoted to food irradiation, an important subject at the present time, and to the thermoluminescent characterization of the minerals extracted from the irradiated food. Another new section is devoted to the thermoluminescent phosphors and their main characteristics. The analytical treatments of the various thermoluminescent models are fully developed. As in the first edition, the arguments are given in alphabetical order to ease research. This second edition therefore aims to provide real practical support for researchers, students and personnel involved in radiation protection services, as well as in medical applications.




Optically Stimulated Luminescence


Book Description

Optically stimulated luminescence has developed into one of the leading optical techniques for the measurement and detection of ionizing radiation. This text covers, in a readable manner, advanced modern applications of the technique, how it can play a useful role in different areas of dosimetry and how to approach the challenges presented when working with optically stimulated luminescence. The six chapters are as follows: Introduction, including a short history of OSL and details of successful applications Theory and Practical Aspects Personal Dosimetry Space Dosimetry Medical Dosimetry Other Applications and Concepts, including retrospective and accident dosimetry, environmental monitoring and UV dosimetry Throughout the book, the underlying theory is discussed on an as-needed basis for a complete understanding of the phenomena, but with an emphasis of the practical applications of the technique. The authors also give background information and relevant key references on each method, inviting the reader to explore deeper into the subject independently. Postgraduates, researchers, and those involved with radiation dosimetry will find this book particularly useful. The material is both relevant and accessible for both specialists and those new to the field, therefore is fundamental to any academic interested in modern advances of the subject.




Introduction to Radiological Physics and Radiation Dosimetry


Book Description

A straightforward presentation of the broad concepts underlying radiological physics and radiation dosimetry for the graduate-level student. Covers photon and neutron attenuation, radiation and charged particle equilibrium, interactions of photons and charged particles with matter, radiotherapy dosimetry, as well as photographic, calorimetric, chemical, and thermoluminescence dosimetry. Includes many new derivations, such as Kramers X-ray spectrum, as well as topics that have not been thoroughly analyzed in other texts, such as broad-beam attenuation and geometrics, and the reciprocity theorem. Subjects are layed out in a logical sequence, making the topics easier for students to follow. Supplemented with numerous diagrams and tables.




Numerical and Practical Exercises in Thermoluminescence


Book Description

Thermoluminescence (TL) is a well-established technique widely used in do- metric and dating applications. Although several excellent reference books exist which document both the t- oretical and experimental aspects of TL, there is a general lack of books that deal withspeci?cnumericalandpracticalaspectsofanalyzingTLdata. Manytimesthe practicaldetailsofanalyzingnumericalTLglowcurvesandofapplyingtheoretical models are dif?cult to ?nd in the published literature. The purpose of this book is to provide a practical guide for both established researchers and for new graduate students entering the ?eld of TL and is intended to be used in conjunction with and as a practical supplement of standard textbooks in the ?eld. Chapter1laysthemathematicalgroundworkforsubsequentchaptersbyprese- ingthefundamentalmathematicalexpressionsmostcommonlyusedforanalyzing experimental TL data. Chapter2presentscomprehensiveexamplesofTLdataanalysisforglowcurves following ?rst-, second-, and general-order kinetics. Detailed analysis of num- ical data is presented by using a variety of methods found in the TL literature, with particular emphasis in the practical aspects and pitfalls that researchers may encounter. Special emphasis is placed on the need to use several different me- ods to analyze the same TL data, as well as on the necessity to analyze glow curves obtained under different experimental conditions. Unfortunately, the lit- ature contains many published papers that claim a speci?c kinetic order for a TL peak in a dosimetric material, based only on a peak shape analysis. It is hoped that the detailed examples provided in Chapter 2 will encourage more comprehensive studies of TL properties of materials, based on the simultaneous use of several different methods of analysis.