Thick-lens Optics
Author : Arthur Latham Baker
Publisher :
Page : 192 pages
File Size : 39,51 MB
Release : 1912
Category : Lenses
ISBN :
Author : Arthur Latham Baker
Publisher :
Page : 192 pages
File Size : 39,51 MB
Release : 1912
Category : Lenses
ISBN :
Author : OpenStax
Publisher :
Page : 622 pages
File Size : 28,25 MB
Release : 2016-11-04
Category : Science
ISBN : 9781680920451
University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.
Author : José Sasián
Publisher : Cambridge University Press
Page : 251 pages
File Size : 49,34 MB
Release : 2019-09-26
Category : Medical
ISBN : 1108494323
A concise introduction to lens design, including the fundamental theory, concepts, methods and tools used in the field. Covering all the essential concepts and providing suggestions for further reading at the end of each chapter, this book is an essential resource for graduate students working in optics and photonics.
Author : Milton Katz
Publisher : World Scientific
Page : 332 pages
File Size : 13,33 MB
Release : 2002
Category : Science
ISBN : 9789812382245
This book is the culmination of twenty-five years of teaching Geometrical Optics. The volume is organised such that the single spherical refracting surface is the basic optical element. Spherical mirrors are treated as special cases of refraction, with the same applicable equations. Thin lens equations follow as combinations of spherical refracting surfaces while the cardinal points of the thick lens make it equivalent to a thin lens. Ultimately, one set of vergence equations are applicable to all these elements.The chapters are devoted to in-depth treatments of stops, pupils and ports; magnifiers, microscopes, telescopes, and camera lenses; ophthalmic instruments; resolving power and MTF; trigonometric ray tracing; and chromatic and monochromatic aberrations. There are over 100 worked examples, 400 homework problems and 400 illustrations.First published in 1994 by Penumbra Publishing Co.
Author : Charles A. DiMarzio
Publisher : CRC Press
Page : 564 pages
File Size : 46,69 MB
Release : 2011-08-09
Category : Science
ISBN : 1439897042
The field of optics has become central to major developments in medical imaging, remote sensing, communication, micro- and nanofabrication, and consumer technology, among other areas. Applications of optics are now found in products such as laser printers, bar-code scanners, and even mobile phones. There is a growing need for engineers to understan
Author : Rudolf Kingslake
Publisher : Academic Press
Page : 570 pages
File Size : 22,79 MB
Release : 2009-11-20
Category : Technology & Engineering
ISBN : 0080921566
- Thoroughly revised and expanded to reflect the substantial changes in the field since its publication in 1978 - Strong emphasis on how to effectively use software design packages, indispensable to today's lens designer - Many new lens design problems and examples – ranging from simple lenses to complex zoom lenses and mirror systems – give insight for both the newcomer and specialist in the field Rudolf Kingslake is regarded as the American father of lens design; his book, not revised since its publication in 1978, is viewed as a classic in the field. Naturally, the area has developed considerably since the book was published, the most obvious changes being the availability of powerful lens design software packages, theoretical advances, and new surface fabrication technologies. This book provides the skills and knowledge to move into the exciting world of contemporary lens design and develop practical lenses needed for the great variety of 21st-century applications. Continuing to focus on fundamental methods and procedures of lens design, this revision by R. Barry Johnson of a classic modernizes symbology and nomenclature, improves conceptual clarity, broadens the study of aberrations, enhances discussion of multi-mirror systems, adds tilted and decentered systems with eccentric pupils, explores use of aberrations in the optimization process, enlarges field flattener concepts, expands discussion of image analysis, includes many new exemplary examples to illustrate concepts, and much more. Optical engineers working in lens design will find this book an invaluable guide to lens design in traditional and emerging areas of application; it is also suited to advanced undergraduate or graduate course in lens design principles and as a self-learning tutorial and reference for the practitioner. Rudolf Kingslake (1903-2003) was a founding faculty member of the Institute of Optics at The University of Rochester (1929) and remained teaching until 1983. Concurrently, in 1937 he became head of the lens design department at Eastman Kodak until his retirement in 1969. Dr. Kingslake published numerous papers, books, and was awarded many patents. He was a Fellow of SPIE and OSA, and an OSA President (1947-48). He was awarded the Progress Medal from SMPTE (1978), the Frederic Ives Medal (1973), and the Gold Medal of SPIE (1980). R. Barry Johnson has been involved for over 40 years in lens design, optical systems design, and electro-optical systems engineering. He has been a faculty member at three academic institutions engaged in optics education and research, co-founder of the Center for Applied Optics at the University of Alabama in Huntsville, employed by a number of companies, and provided consulting services. Dr. Johnson is an SPIE Fellow and Life Member, OSA Fellow, and an SPIE President (1987). He published numerous papers and has been awarded many patents. Dr. Johnson was founder and Chairman of the SPIE Lens Design Working Group (1988-2002), is an active Program Committee member of the International Optical Design Conference, and perennial co-chair of the annual SPIE Current Developments in Lens Design and Optical Engineering Conference. - Thoroughly revised and expanded to reflect the substantial changes in the field since its publication in 1978 - Strong emphasis on how to effectively use software design packages, indispensable to today's lens designer - Many new lens design problems and examples – ranging from simple lenses to complex zoom lenses and mirror systems – give insight for both the newcomer and specialist in the field
Author : Kailash K. Sharma
Publisher : Elsevier
Page : 657 pages
File Size : 18,97 MB
Release : 2006-09-27
Category : Technology & Engineering
ISBN : 0080463916
Optics clearly explains the principles of optics using excellent pedagogy to support student learning. Beginning with introductory ideas and equations, K.K. Sharma takes the reader through the world of optics by detailing problems encountered, advanced subjects, and actual applications. Elegantly written, this book rigorously examines optics with over 300 illustrations and several problems in each chapter. The book begins with light propagation in anisotropic media considered much later in most books. Nearly one third of the book deals with applications of optics. This simple idea of merging the sometimes overwhelming and dry subject of optics with real world applications will create better future engineers. It will make ‘optics’ jump off the page for readers and they will see it take shape in the world around them. In presenting optics practically, as well as theoretically, readers will come away not only with a complete knowledge base but a context in which to place it. This book is recommended for optical engineers, libraries, senior undergraduate students, graduate students, and professors. Strong emphasis on applications to demonstrate the relevance of the theory Includes chapter on problem solving of ray deviations, focusing errors, and distortion Problems are included at the end of each chapter for thorough understanding of this dense subject matter
Author : David S. Loshin
Publisher : Elsevier Health Sciences
Page : 221 pages
File Size : 21,40 MB
Release : 2015-01-28
Category : Medical
ISBN : 1483293653
This workbook is designed to supplement optics textbooks and covers all the traditional topics of geometrical optics. Terms, equations, definitions, and concepts are discussed briefly and explained through a series of problems that are worked out in a step-by-step manner which simplifies the problem-solving process. Additional practice problems are provided at the end of each chapter.* - An indispensable tool when studying for the state and National Boards * - An ideal supplement to optics textbooks * - Covers the traditional topics of geometrical optics.
Author : Matt Pharr
Publisher : Morgan Kaufmann
Page : 1201 pages
File Size : 31,25 MB
Release : 2010-06-28
Category : Computers
ISBN : 0123750792
This updated edition describes both the mathematical theory behind a modern photorealistic rendering system as well as its practical implementation. Through the ideas and software in this book, designers will learn to design and employ a full-featured rendering system for creating stunning imagery. Includes a companion site complete with source code for the rendering system described in the book, with support for Windows, OS X, and Linux.
Author : Karl Dieter Moeller
Publisher : Springer Science & Business Media
Page : 459 pages
File Size : 18,18 MB
Release : 2007-09-05
Category : Science
ISBN : 0387694927
This new edition is intended for a one semester course in optics for juniors and seniors in science and engineering. It uses scripts from Maple, MathCad, Mathematica, and MATLAB to provide a simulated laboratory where students can learn by exploration and discovery instead of passive absorption. The text covers all the standard topics of a traditional optics course. It contains step by step derivations of all basic formulas in geometrical, wave and Fourier optics. The threefold arrangement of text, applications, and files makes the book suitable for "self-learning" by scientists or engineers who would like to refresh their knowledge of optics.