Thin Film Solar Cells with Light Trapping Transparent Conducting Oxide Layer


Book Description

Thin film solar cells, if film thickness is thinner than the optical absorption length, typically give lower cell performance. For the thinner structure, electric current loss due to light penetration can offset the electric current gain obtained from higher built-in electric field. Light trapping schemes can increase the effective optical absorption length and thus enhance the electric current for thinner solar cells. Here a new light trapping scheme based on light trapping transparent conducting oxide layer (LT-TCO) is proposed to enhance the performance of thin film solar cells. Three different configurations of integrating the LT-TCO layer in solar cells are proposed and evaluated. This research aims to develop the LT-TCO layer with surface texture and good conductivity by pulsed laser deposition (PLD) technique at low temperature. The LT-TCO layer is fabricated by PLD deposition of Al-doped ZnO to achieve multilayer films by tuning of oxygen pressure. The light trapping effect is examined by optical transmittance measurement and the surface texture is characterized by transmission electron microscopy (TEM) technique. The conductivity of LT-TCO layer is measured by resistivity measurement. Thin film CdTe/CdS solar cells are fabricated by PLD technique to develop baseline solar cells for integration of LT-TCO layer. The as-deposited thin film solar cells show relatively low performance and are further processed with various post-deposition treatments to seek efficiency enhancement. The effects of different processes on cell performance are examined by electrical, optical, and microstructure studies. Air annealing of CdS layer and CdCl2 treatment of CdTe layer combined are found to yield the best cell performance. The fabrication issues that limit the cell performance are discussed and future optimizations in fabrication processes are suggested.




Thin-Film Silicon Solar Cells


Book Description

Photovoltaic technology has now developed to the extent that it is close to fulfilling the vision of a "solar-energy world," as devices based on this technology are becoming efficient, low-cost and durable. This book provides a comprehensive treatment of thin-film silicon, a prevalent PV material, in terms of its semiconductor nature, startin




Electrochemical Deposition of Transparent Conducting Oxides for Photovoltaic Applications


Book Description

Textured back reflector (BR) is an essential component used in substrate type solar cells for light trapping, which enhances the long wavelength absorption. Most commonly used BR consists of a reflecting metal layer(s) of Ag and/or Al and a transparent conducting oxide (TCO) layer such as ZnO. This type of BR, if properly textured, can lead to about 20% increase in the short-circuit current and cell efficiency. A widely used technique for producing the BR is sputtering due to its simplicity and easy operation for large area thin film solar cell applications. The TCO layer needs to be thick enough (>500 nm) to reach a textured structure and to prevent the metal in the BR from diffusing into the solar cell layers. Thus, the ZnO deposition becomes the bottleneck in the BR process. Significant efforts have been putting on developing novel techniques that can produce ZnO coatings with better texture and high deposition rate. To address the above issue electrodeposition was employed to coat ZnO film, because it gives high deposition rate at low cost. A systematic study of conventional electrodeposition was performed. Further improvements for the electrodeposition process have done to eliminate some of the problems associated with conventional electrodeposition. In addition highly textured BR produced by electrodeposited ZnO changes the electrical structure of the device. The necessity to consider these factors when fabricating solar cells on highly textured BR was emphasized using PVOPTICS and AMPS modeling. Hydrogen is considered to be the fuel of the future. Subsequently there are many attempts of generating H2 by environmentally friendly means. One such proposed system is photo-electrochemical cell (PEC) consist of transparent conducting corrosion resistive (TCCR) layer, a-Si:H solar cell and catalytic layer. The research work done to identify the potential TCCR layers and fabrication of porous nickel catalyst layer will be discussed.




Silicon Based Thin Film Solar Cells


Book Description

Silicon Based Thin Film Solar Cells explains concepts related to technologies for silicon (Si) based photovoltaic applications. Topics in this book focus on ‘new concept’ solar cells. These kinds of cells can make photovoltaic power production an economically viable option in comparison to the bulk crystalline semiconductor technology industry. A transition from bulk crystalline Si solar cells toward thin-film technologies reduces usage of active material and introduces new concepts based on nanotechnologies. Despite its importance, the scientific development and understanding of new solar cells is not very advanced, and educational resources for specialized engineers and scientists are required. This textbook presents the fundamental scientific aspects of Si thin films growth technology, together with a clear understanding of the properties of the material and how this is employed in new generation photovoltaic solar cells. The textbook is a valuable resource for graduate students working on their theses, young researchers and all people approaching problems and fundamental aspects of advanced photovoltaic conversion.




Improved Transparent Conducting Oxides Boost Performance of Thin-Film Solar Cells (Fact Sheet)


Book Description

Today?s thin-film solar cells could not function without transparent conducting oxides (TCOs). TCOs act as a window, both protecting the cell and allowing light to pass through to the cell?s active layers. Until recently, TCOs were seen as a necessary, but static, layer of a thin-film photovoltaic (PV) cell. But a group of researchers at the National Renewable Energy Laboratory (NREL) hasidentified a pathway to producing improved TCO films that demonstrate higher infrared transparency. To do so, they have modified the TCOs in ways that did not seem possible a few years ago.




Anti-reflection and Light Trapping in c-Si Solar Cells


Book Description

This book offers essential insights into c-Si based solar cells and fundamentals of reflection, refraction, and light trapping. The basic physics and technology for light trapping in c-Si based solar cells are covered, from traditional to advanced light trapping structures. Further, the book discusses the latest developments in plasmonics for c-Si solar cell applications, along with their future scope and the requirements for further research. The book offers a valuable guide for graduate students, researchers and professionals interested in the latest trends in solar cell technologies.







Optical Modeling and Simulation of Thin-Film Photovoltaic Devices


Book Description

In wafer-based and thin-film photovoltaic (PV) devices, the management of light is a crucial aspect of optimization since trapping sunlight in active parts of PV devices is essential for efficient energy conversions. Optical modeling and simulation enable efficient analysis and optimization of the optical situation in optoelectronic and PV devices. Optical Modeling and Simulation of Thin-Film Photovoltaic Devices provides readers with a thorough guide to performing optical modeling and simulations of thin-film solar cells and PV modules. It offers insight on examples of existing optical models, demonstrates the applicability of optical modeling, and presents concrete directions and solutions for improving the devices. Along with giving practical hints, the book highlights significant research, development, and production in the field. It covers numerous approaches of one-, two-, and three-dimensional optical modeling, including one-dimensional semi-coherent modeling and two-dimensional modeling based on the finite element method (FEM). Many practical examples illustrate the use of simulations with the developed models, helping readers better understand and develop their own models as well as appreciate innovative concepts in light management in thin-film PV devices.




2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC)


Book Description

scientific and engineering technical conference covering all aspects of photovoltaics materials, devices, systems and reliability




Silicon Heterojunction Solar Cells


Book Description

The world of today must face up to two contradictory energy problems: on the one hand, there is the sharply growing consumer demand in countries such as China and India. On the other hand, natural resources are dwindling. Moreover, many of those countries which still possess substantial gas and oil supplies are politically unstable. As a result, renewable natural energy sources have received great attention. Among these, solar-cell technology is one of the most promising candidates. However, there still remains the problem of the manufacturing costs of such cells. Many attempts have been made to reduce the production costs of “conventional” solar cells (manufactured from monocrystalline silicon using diffusion methods) by instead using cheaper grades of silicon, and simpler pn-junction fabrication. That is the ‘hero’ of this book; the heterojunction solar cell.