Thin Films, Atomic Layer Deposition, and 3D Printing


Book Description

Thin Films, Atomic Layer Deposition, and 3D Printing explains the concept of thin films, atomic layers deposition, and the Fourth Industrial Revolution (4IR) with an aim to illustrate existing resources and give a broader perspective of the involved processes as well as provide a selection of different types of 3D printing, materials used for 3D printing, emerging trends and applications, and current top-performing 3D printers using different technologies. It covers the concept of the 4IR and its role in current and future human endeavors for both experts/nonexperts. The book includes figures, diagrams, and their applications in real-life situations. Features: Provides comprehensive material on conventional and emerging thin film, atomic layer, and additive technologies. Discusses the concept of Industry 4.0 in thin films technology. Details the preparation and properties of hybrid and scalable (ultra) thin materials for advanced applications. Explores detailed bibliometric analyses on pertinent applications. Interconnects atomic layer deposition and additive manufacturing. This book is aimed at researchers and graduate students in mechanical, materials, and metallurgical engineering.




Thin Films, Atomic Layer Deposition, and 3D Printing


Book Description

It explains concept of thin films, atomic layers deposition, and the fourth industrial revolution (4IR) with aim to illustrate existing resources and explains processes, provide a selection of different types of 3D printing, used materials, emerging trends and applications, and current top-performing 3D printers using different technologies.




Chemical Vapour Deposition


Book Description

"The book is one of the most comprehensive overviews ever written on the key aspects of chemical vapour deposition processes and it is more comprehensive, technically detailed and up-to-date than other books on CVD. The contributing authors are all practising CVD technologists and are leading international experts in the field of CVD. It presents a logical and progressive overview of the various aspects of CVD processes. Basic concepts, such as the various types of CVD processes, the design of CVD reactors, reaction modelling and CVD precursor chemistry are covered in the first few"--Jacket




Atomic Layer Deposition for Semiconductors


Book Description

Offering thorough coverage of atomic layer deposition (ALD), this book moves from basic chemistry of ALD and modeling of processes to examine ALD in memory, logic devices and machines. Reviews history, operating principles and ALD processes for each device.




Advanced Additive Manufacturing


Book Description

Additive manufacturing (AM) is now being used to produce series components for the most demanding applications. It is a disruptive, if not revolutionary, manufacturing technology. The biggest advantage of this technology is its capacity to make parts with any free form, thus paving the way for free and complex part design. Components and integrated structures with complex designs that would not have been possible just a few years ago can now be made according to various requirements. The net-shape manufacturing capacity of AM allows a considerable saving of materials, conventional thermomechanical processing, and machining processes, making it an environmentally friendly manufacturing technology. This book includes two sections that cover new approaches in AM for biomedical applications and advanced technological solutions.




Advanced Nano Deposition Methods


Book Description

This concise reference summarizes the latest results in nano-structured thin films, the first to discuss both deposition methods and electronic applications in detail. Following an introduction to this rapidly developing field, the authors present a variety of organic and inorganic materials along with new deposition techniques, and conclude with an overview of applications and considerations for their technology deployment.




Handbook of Manufacturing Engineering and Technology


Book Description

The Springer Reference Work Handbook of Manufacturing Engineering and Technology provides overviews and in-depth and authoritative analyses on the basic and cutting-edge manufacturing technologies and sciences across a broad spectrum of areas. These topics are commonly encountered in industries as well as in academia. Manufacturing engineering curricula across universities are now essential topics covered in major universities worldwide.




Semiconducting Polymer Materials for Biosensing Applications


Book Description

Semiconducting Polymer Materials for Biosensing Applications provides a comprehensive look at semiconducting polymer materials and their deposition, characterization and use in biosensors. The book begins with an introduction to the key materials and background of essential technologies. Major types of monomer chemistries and fabrication of polymer materials are discussed, with a focus on semiconducting films suitable for use in (bio)sensors. A survey of the state-of-the-art for organic thin-film polymer semiconductor sensor-based fabrication methods for materials and devices covers a wide range of chemical, material, physical and advanced fabrication techniques. The book concludes with a chapter on theoretical insights for designing sensors, (bio)sensors for medical, food and environmental applications and the future of sensors. This book is suitable for materials scientists and engineers and biomedical engineers in academia or industry. - Reviews the most promising semiconductor polymer materials, such as conjugated polymers most frequently used in biosensing applications - Provides an overview of the electrochemical techniques to process semiconductor polymer materials - Discusses the use of semiconductor polymer-based biosensors in biomedical, environmental, chemical and aerospace applications




Hybrid Perovskite Solar Cells


Book Description

Unparalleled coverage of the most vibrant research field in photovoltaics! Hybrid perovskites, revolutionary game-changing semiconductor materials, have every favorable optoelectronic characteristic necessary for realizing high efficiency solar cells. The remarkable features of hybrid perovskite photovoltaics, such as superior material properties, easy material fabrication by solution-based processing, large-area device fabrication by an inkjet technology, and simple solar cell structures, have brought enormous attentions, leading to a rapid development of the solar cell technology at a pace never before seen in solar cell history. Hybrid Perovskite Solar Cells: Characteristics and Operation covers extensive topics of hybrid perovskite solar cells, providing easy-to-read descriptions for the fundamental characteristics of unique hybrid perovskite materials (Part I) as well as the principles and applications of hybrid perovskite solar cells (Part II). Both basic and advanced concepts of hybrid perovskite devices are treated thoroughly in this book; in particular, explanatory descriptions for general physical and chemical aspects of hybrid perovskite photovoltaics are included to provide fundamental understanding. This comprehensive book is highly suitable for graduate school students and researchers who are not familiar with hybrid perovskite materials and devices, allowing the accumulation of the accurate knowledge from the basic to the advanced levels.




Atomic Layer Deposition in Energy Conversion Applications


Book Description

Combining the two topics for the first time, this book begins with an introduction to the recent challenges in energy conversion devices from a materials preparation perspective and how they can be overcome by using atomic layer deposition (ALD). By bridging these subjects it helps ALD specialists to understand the requirements within the energy conversion field, and researchers in energy conversion to become acquainted with the opportunities offered by ALD. With its main focus on applications of ALD for photovoltaics, electrochemical energy storage, and photo- and electrochemical devices, this is important reading for materials scientists, surface chemists, electrochemists, electrotechnicians, physicists, and those working in the semiconductor industry.