Beyond Coding


Book Description

Why children should be taught coding not as a technical skill but as a new literacy—a way to express themselves and engage with the world. Today, schools are introducing STEM education and robotics to children in ever-lower grades. In Beyond Coding, Marina Umaschi Bers lays out a pedagogical roadmap for teaching code that encompasses the cultivation of character along with technical knowledge and skills. Presenting code as a universal language, she shows how children discover new ways of thinking, relating, and behaving through creative coding activities. Today’s children will undoubtedly have the technical knowledge to change the world. But cultivating strength of character, socioeconomic maturity, and a moral compass alongside that knowledge, says Bers, is crucial. Bers, a leading proponent of teaching computational thinking and coding as early as preschool and kindergarten, presents examples of children and teachers using the Scratch Jr. and Kibo robotics platforms to make explicit some of the positive values implicit in the process of learning computer science. If we are to do right by our children, our approach to coding must incorporate the elements of a moral education: the use of narrative to explore identity and values, the development of logical thinking to think critically and solve technical and ethical problems, and experiences in the community to enable personal relationships. Through learning the language of programming, says Bers, it is possible for diverse cultural and religious groups to find points of connection, put assumptions and stereotypes behind them, and work together toward a common goal.




No Fear Coding


Book Description

Coding and computational thinking (the ability to think like a computer) are among the skills that will serve students well in the future. Coding goes beyond websites and software - it's an essential component in finding solutions to everyday problems. Computational thinking has many applications beyond the computer lab or math class -it teaches reasoning, creativity and expression, and is an innovative way to demonstrate content knowledge and see mathematical processes in action. No-Fear Coding shows K-5 educators how to bring coding into their curriculum by embedding computational thinking skills into activities for every content area. At the same time, embedding these skills helps students prepare for coding in the middle grades as they build their knowledge. To help teachers easily and effectively introduce coding, the book features: Classroom-tested lessons and activities designed for skills progression. Ready-to-implement coding exercises that can be incorporated across the curriculum. Alignment to ISTE and Computer Science Teachers Association (CSTA) standards. Case studies and explorations of technology tools and resources to teach coding.




Head First Learn to Code


Book Description

What will you learn from this book? Itâ??s no secret the world around you is becoming more connected, more configurable, more programmable, more computational. You can remain a passive participant, or you can learn to code. With Head First Learn to Code youâ??ll learn how to think computationally and how to write code to make your computer, mobile device, or anything with a CPU do things for you. Using the Python programming language, youâ??ll learn step by step the core concepts of programming as well as many fundamental topics from computer science, such as data structures, storage, abstraction, recursion, and modularity. Why does this book look so different? Based on the latest research in cognitive science and learning theory, Head First Learn to Code uses a visually rich format to engage your mind, rather than a text-heavy approach that puts you to sleep. Why waste your time struggling with new concepts? This multi-sensory learning experience is designed for the way your brain really works.




Coding as a Playground


Book Description

Coding as a Playground, Second Edition focuses on how young children (aged 7 and under) can engage in computational thinking and be taught to become computer programmers, a process that can increase both their cognitive and social-emotional skills. Learn how coding can engage children as producers—and not merely consumers—of technology in a playful way. You will come away from this groundbreaking work with an understanding of how coding promotes developmentally appropriate experiences such as problem-solving, imagination, cognitive challenges, social interactions, motor skills development, emotional exploration, and making different choices. Featuring all-new case studies, vignettes, and projects, as well as an expanded focus on teaching coding as a new literacy, this second edition helps you learn how to integrate coding into different curricular areas to promote literacy, math, science, engineering, and the arts through a project-based approach and a positive attitude to learning.




Beyond Coding


Book Description

Why children should be taught coding not as a technical skill but as a new literacy—a way to express themselves and engage with the world. Today, schools are introducing STEM education and robotics to children in ever-lower grades. In Beyond Coding, Marina Umaschi Bers lays out a pedagogical roadmap for teaching code that encompasses the cultivation of character along with technical knowledge and skills. Presenting code as a universal language, she shows how children discover new ways of thinking, relating, and behaving through creative coding activities. Today’s children will undoubtedly have the technical knowledge to change the world. But cultivating strength of character, socioeconomic maturity, and a moral compass alongside that knowledge, says Bers, is crucial. Bers, a leading proponent of teaching computational thinking and coding as early as preschool and kindergarten, presents examples of children and teachers using the Scratch Jr. and Kibo robotics platforms to make explicit some of the positive values implicit in the process of learning computer science. If we are to do right by our children, our approach to coding must incorporate the elements of a moral education: the use of narrative to explore identity and values, the development of logical thinking to think critically and solve technical and ethical problems, and experiences in the community to enable personal relationships. Through learning the language of programming, says Bers, it is possible for diverse cultural and religious groups to find points of connection, put assumptions and stereotypes behind them, and work together toward a common goal.




Computational Thinking and Coding for Every Student


Book Description

Empower tomorrow’s tech innovators Our students are avid users and consumers of technology. Isn’t it time that they see themselves as the next technological innovators, too? Computational Thinking and Coding for Every Student is the beginner’s guide for K-12 educators who want to learn to integrate the basics of computer science into their curriculum. Readers will find Practical strategies for teaching computational thinking and the beginning steps to introduce coding at any grade level, across disciplines, and during out-of-school time Instruction-ready lessons and activities for every grade Specific guidance for designing a learning pathway for elementary, middle, or high school students Justification for making coding and computer science accessible to all A glossary with definitions of key computer science terms, a discussion guide with tips for making the most of the book, and companion website with videos, activities, and other resources Momentum for computer science education is growing as educators and parents realize how fundamental computing has become for the jobs of the future. This book is for educators who see all of their students as creative thinkers and active contributors to tomorrow’s innovations. "Kiki Prottsman and Jane Krauss have been at the forefront of the rising popularity of computer science and are experts in the issues that the field faces, such as equity and diversity. In this book, they’ve condensed years of research and practitioner experience into an easy to read narrative about what computer science is, why it is important, and how to teach it to a variety of audiences. Their ideas aren’t just good, they are research-based and have been in practice in thousands of classrooms...So to the hundreds and thousands of teachers who are considering, learning, or actively teaching computer science—this book is well worth your time." Pat Yongpradit Chief Academic Officer, Code.org




Teaching Computational Thinking and Coding to Young Children


Book Description

Computational thinking is a lifelong skill important for succeeding in careers and life. Students especially need to acquire this skill while in school as it can assist with solving a number of complex problems that arise later in life. Therefore, the importance of teaching computational thinking and coding in early education is paramount for fostering problem-solving and creativity. Teaching Computational Thinking and Coding to Young Children discusses the importance of teaching computational thinking and coding in early education. The book focuses on interdisciplinary connections between computational thinking and other areas of study, assessment methods for computational thinking, and different contexts in which computational thinking plays out. Covering topics such as programming, computational thinking assessment, computational expression, and coding, this book is essential for elementary and middle school teachers, early childhood educators, administrators, instructional designers, curricula developers, educational software developers, researchers, educators, academicians, and students in computer science, education, computational thinking, and early childhood education.




Mindstorms


Book Description

In this revolutionary book, a renowned computer scientist explains the importance of teaching children the basics of computing and how it can prepare them to succeed in the ever-evolving tech world. Computers have completely changed the way we teach children. We have Mindstorms to thank for that. In this book, pioneering computer scientist Seymour Papert uses the invention of LOGO, the first child-friendly programming language, to make the case for the value of teaching children with computers. Papert argues that children are more than capable of mastering computers, and that teaching computational processes like de-bugging in the classroom can change the way we learn everything else. He also shows that schools saturated with technology can actually improve socialization and interaction among students and between students and teachers. Technology changes every day, but the basic ways that computers can help us learn remain. For thousands of teachers and parents who have sought creative ways to help children learn with computers, Mindstorms is their bible.




Computational Thinking Education


Book Description

This This book is open access under a CC BY 4.0 license.This book offers a comprehensive guide, covering every important aspect of computational thinking education. It provides an in-depth discussion of computational thinking, including the notion of perceiving computational thinking practices as ways of mapping models from the abstraction of data and process structures to natural phenomena. Further, it explores how computational thinking education is implemented in different regions, and how computational thinking is being integrated into subject learning in K-12 education. In closing, it discusses computational thinking from the perspective of STEM education, the use of video games to teach computational thinking, and how computational thinking is helping to transform the quality of the workforce in the textile and apparel industry.




Algorithmic Thinking


Book Description

A hands-on, problem-based introduction to building algorithms and data structures to solve problems with a computer. Algorithmic Thinking will teach you how to solve challenging programming problems and design your own algorithms. Daniel Zingaro, a master teacher, draws his examples from world-class programming competitions like USACO and IOI. You'll learn how to classify problems, choose data structures, and identify appropriate algorithms. You'll also learn how your choice of data structure, whether a hash table, heap, or tree, can affect runtime and speed up your algorithms; and how to adopt powerful strategies like recursion, dynamic programming, and binary search to solve challenging problems. Line-by-line breakdowns of the code will teach you how to use algorithms and data structures like: The breadth-first search algorithm to find the optimal way to play a board game or find the best way to translate a book Dijkstra's algorithm to determine how many mice can exit a maze or the number of fastest routes between two locations The union-find data structure to answer questions about connections in a social network or determine who are friends or enemies The heap data structure to determine the amount of money given away in a promotion The hash-table data structure to determine whether snowflakes are unique or identify compound words in a dictionary NOTE: Each problem in this book is available on a programming-judge website. You'll find the site's URL and problem ID in the description. What's better than a free correctness check?