Thinning Methodologies for Pattern Recognition


Book Description

Thinning is a technique widely used in the pre-processing stage of a pattern recognition system to compress data and to enhance feature extraction in the subsequent stage. It reduces a digitized pattern to a skeleton so that all resulting branches are 1 pixel thick. The method seems easy at first and has many advantages, however after two decades of intensive research, it has been found to be very challenging due to the difficulties in programming computers to do it.This collection of 15 papers by leading scientists working in the area examines the theoretical and experimental aspects of thinning methodologies. The authors have addressed the problems faced, compared their performance results with others, and assessed the challenges ahead. Researchers will find the volume helpful in shedding light on difficult issues and stimulating further research in the area.




Handbook Of Pattern Recognition And Computer Vision (2nd Edition)


Book Description

The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference. This indispensable handbook will continue to serve as an authoritative and comprehensive guide in the field.




Pattern Recognition


Book Description

This volume, containing contributions by experts from all over the world, is a collection of 21 articles which present review and research material describing the evolution and recent developments of various pattern recognition methodologies, ranging from statistical, syntactic/linguistic, fuzzy-set-theoretic, neural, genetic-algorithmic and rough-set-theoretic to hybrid soft computing, with significant real-life applications. In addition, the book describes efficient soft machine learning algorithms for data mining and knowledge discovery. With a balanced mixture of theory, algorithms and applications, as well as up-to-date information and an extensive bibliography, Pattern Recognition: From Classical to Modern Approaches is a very useful resource. Contents: Pattern Recognition: Evolution of Methodologies and Data Mining (A Pal & S K Pal); Adaptive Stochastic Algorithms for Pattern Classification (M A L Thathachar & P S Sastry); Shape in Images (K V Mardia); Decision Trees for Classification: A Review and Some New Results (R Kothari & M Dong); Syntactic Pattern Recognition (A K Majumder & A K Ray); Fuzzy Sets as a Logic Canvas for Pattern Recognition (W Pedrycz & N Pizzi); Neural Network Based Pattern Recognition (V David Sanchez A); Networks of Spiking Neurons in Data Mining (K Cios & D M Sala); Genetic Algorithms, Pattern Classification and Neural Networks Design (S Bandyopadhyay et al.); Rough Sets in Pattern Recognition (A Skowron & R Swiniarski); Automated Generation of Qualitative Representations of Complex Objects by Hybrid Soft-Computing Methods (E H Ruspini & I S Zwir); Writing Speed and Writing Sequence Invariant On-line Handwriting Recognition (S-H Cha & S N Srihari); Tongue Diagnosis Based on Biometric Pattern Recognition Technology (K Wang et al.); and other papers. Readership: Graduate students, researchers and academics in pattern recognition.




Computer-Aided Intelligent Recognition Techniques and Applications


Book Description

Intelligent recognition methods have recently proven to be indispensable in a variety of modern industries, including computer vision, robotics, medical imaging, visualization and the media. Furthermore, they play a critical role in the traditional fields such as character recognition, natural language processing and personal identification. This cutting-edge book draws together the latest findings of industry experts and researchers from around the globe. It is a timely guide for all those require comprehensive, state-of-the-art advice on the present status and future potential of intelligent recognition technology. Computer-Aided Intelligent Recognition Techniques and Applications: Provides the user community with systems and tools for application in a very wide range of areas, including: IT, education, security, banking, police, postal services, manufacturing, mining, medicine, multimedia, entertainment, communications, data visualization, knowledge extraction, pattern classification and virtual reality. Disseminates information in a plethora of disciplines, for example pattern recognition, AI, image processing, computer vision and graphics, neural networks, cryptography, fuzzy logic, databases, evolutionary algorithms, shape and numerical analysis. Illustrates all theory with real-world examples and case studies. This valuable resource is essential reading for computer scientists, engineers, and consultants requiring up-to-date comprehensive guidance on the latest developments in computer-aided intelligent recognition techniques and applications. Its detailed, practical approach will be of interest to senior undergraduate and graduate students as well as researchers and industry experts in the field of intelligent recognition.




Advances in Pattern Recognition


Book Description

This book constitutes the thoroughly refereed proceedings of the Second Mexican Conference on Pattern Recognition, MCPR 2010, held in Puebly, Mexico, in September 2010. The 39 revised papers were carefully reviewed and selected from 89 submissions and are organized in topical sections on computer vision and robotics, image processing, neural networks and signal processing, pattern recognition, data mining, natural language and document processing.




Advances in Pattern Recognition


Book Description

Annotation. This book constitutes the thoroughly refereed proceedings of the Second Mexican Conference on Pattern Recognition, MCPR 2010, held in Puebly, Mexico, in September 2010. The 39 revised papers were carefully reviewed and selected from 89 submissions and are organized in topical sections on computer vision and robotics, image processing, neural networks and signal processing, pattern recognition, data mining, natural language and document processing.




Parallel Image Analysis


Book Description

This volume deals with the following topics: 2-D, 3-D automata and grammars, parallel architecture for image processing, parallel digital geometry algorithms, data allocation strategies for parallel image processing algorithms, complexity analysis of parallel image operators. The contributions are written by leading experts in the fields of models, algorithms and architectures for parallel image processing.




Pattern Recognition Technologies and Applications: Recent Advances


Book Description

The nature of handwriting in our society has significantly altered over the ages due to the introduction of new technologies such as computers and the World Wide Web. With increases in the amount of signature verification needs, state of the art internet and paper-based automated recognition methods are necessary. Pattern Recognition Technologies and Applications: Recent Advances provides cutting-edge pattern recognition techniques and applications. Written by world-renowned experts in their field, this easy to understand book is a must have for those seeking explanation in topics such as on- and offline handwriting and speech recognition, signature verification, and gender classification.




Combinatorial Image Analysis


Book Description

This volume constitutes the refereed proceedings of the 16th International Workshop on Combinatorial Image Analysis, IWCIA 2014, held in Brno, Czech Republic, in May 2014. The 20 revised full papers and 3 invited papers presented were carefully reviewed and selected from numerous submissions. The topics covered include discrete geometry and topology in imaging science, new results in image representation, segmentation, grouping, and reconstruction, medical image processing.




Parallel Image Analysis: Theory And Applications


Book Description

This volume deals with the following topics: 2-D, 3-D automata and grammars, parallel architecture for image processing, parallel digital geometry algorithms, data allocation strategies for parallel image processing algorithms, complexity analysis of parallel image operators. The contributions are written by leading experts in the fields of models, algorithms and architectures for parallel image processing.