Book Description
BUKU 1: IMPLEMENTASI MACHINE LEARNING DENGAN PYTHON GUI Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “LEARN FROM SCRATCH MACHINE LEARNING WITH PYTHON GUI”. Anda bisa mengaksesnya di Amazon maupun di Google Books. Pada buku ini, Anda akan mempelajari cara menggunakan NumPy, Pandas, OpenCV, Scikit-Learn, dan pustaka lain untuk memplot grafik dan memproses citra digital. Kemudian, Anda akan mempelajari cara mengklasifikasikan fitur menggunakan model Perceptron, Adaline, Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), dan K-Nearest Neighbor (KNN). Anda juga akan belajar cara mengekstraksi fitur menggunakan algoritma Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Kernel Principal Component Analysis (KPCA) dan menggunakannya dalam pembelajaran mesin (machine learning). Pada Bab 1, Anda akan mempelajari dasar-dasar penggunakan Python GUI dengan Qt Designer. Pada Bab 2, Anda akan mempelajari: Langkah-Langkah Menciptakan Grafik Garis Sederhana; Langkah-Langkah Menampilkan Grafik Garis dengan Python GUI: Bagian 1; Langkah-Langkah Menampilkan Grafik Garis dengan Python GUI: Bagian 2; Langkah-Langkah Menampilkan Dua atau Lebih Grafik pada Sumbu yang Sama; Langkah-Langkah Menciptakan Dua Sumbu pada Satu Canvas; Langkah-Langkah Menggunakan Dua Widget; Langkah-Langkah Menggunakan Dua Widget, Masing-Masing Memiliki Dua Sumbu; Langkah-Langkah Menggunakan Sumbu dengan Tingkat Keburaman Tertentu; Langkah-Langkah Memilih Warna Garis dari Combo Box; Langkah-Langkah Menghitung Fast Fourier Transform; Langkah-Langkah Menciptakan GUI untuk FFT; Langkah-Langkan Menciptakan GUI untuk FFT atas Sinyal-Sinyal Masukan Lain; Langkah-Langkah Menciptakan GUI untuk Sinyal Berderau; Langkah-Langkah Menciptakan GUI untuk Penapisan Sinyal Berderau; Langkah-Langkah Mencipakan GUI untuk Penapisan Sinyal Wav; Langkah-Langkah Mengkonversi Citra RGB Menjadi Keabuan; Langkah-Langkah Mengkonversi Citra RGB Menjadi Citra YUV; Langkah-Langkah Mengkonversi Citra RGB Menjadi Citra HSV; Langkah-Langkah Menapis Citra; Langkah-Langkah Menampilkan Histogram Citra ; Langkah-Langkah Menampilkan Histogram Citra Tertapis; Langkah-Langkah Menapis Citra: Memanfaatkan CheckBox; Langkah-Langkah Mengimplementasikan Ambang Batas Citra; dan Langkah-Langkah Mengimplementasikan Ambang Batas Adaptif. Pada Bab 3, Anda akan mempelajari: Langkah-Langkah Implementasi Perceptron; Langkah-Langkah Implementasi Perceptron dengan PyQt; Langkah-Langkah Implementasi Adaline (ADAptive LInear NEuron); dan Langkah-Langkah Implementasi Adaline dengan PyQt. Pada Bab 4, Anda akan mempelajari: Langkah-Langkah Implementasi Perceptron Menggunakan Scikit-Learn dengan PyQt; Langkah-Langkah Implementasi Model Logistic Regression (LR); Langkah-Langkah Implementasi Model Logistic Regression dengan PyQt; Langkah-Langkah Implementasi Model Logistic Regression Menggunakan Scikit-Learn dengan PyQt; Langkah-Langkah Implementasi Mode Support Vector Machine (SVM) Menggunakan Scikit-Learn; Langkah-Langkah Implementasi Decision Tree (DT) Menggunakan Scikit-Learn; Langkah-Langkah Implementasi Model Random Forest (RF) Menggunakan Scikit-Learn; dan Langkah-Langkah Implementasi Model K-Nearest Neighbor (KNN) Menggunakan Scikit-Learn. Pada Bab 5, Anda akan mempelajari: Langkah-Langkah Implementasi Principal Component Analysis (PCA); Langkah-Langkah Implementasi Principal Component Analysis (PCA); Menggunakan Scikit-Learn; Langkah-Langkah Implementasi Principal Component Analysis (PCA) Menggunakan Scikit-Learn dengan PyQt; Langkah-Langkah Implementasi Linear Discriminant Analysis (LDA); Langkah-Langkah Implementasi Linear Discriminant Analysis (LDA) dengan scikit-learn; Langkah-Langkah Implementasi Linear Discriminant Analysis (LDA) Menggunakan Scikit-Learn dengan PyQt; Langkah-Langkah Implementasi Kernel Principal Component Analysis (KPCA) Menggunakan Scikit-Learn; dan Langkah-Langkah Implementasi Kernel Principal Component Analysis (KPCA) Menggunakan Scikit-Learn dengan PyQt. Pada Bab 6, Anda akan mempelajari: Langkah-Langkah Memuat Dataset MNIST; Langkah-Langkah Memuat Dataset MNIST dengan PyQt; Langkah-Langkah Implementasi Perceptron dengan Ekstraktor Fitur PCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Perceptron dengan Ekstraktor Fitur LDA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Perceptron dengan Ekstraktor Fitur KPCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Logistic Regression (LR) dengan Ekstraktor Fitur PCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Logistic Regression (LR) dengan Ekstraktor Fitur LDA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Logistic Regression (LR) dengan Ekstraktor Fitur KPCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Support Vector Machine (SVM) dengan Ekstraktor Fitur PCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Support Vector Machine (SVM) dengan Ekstraktor Fitur LDA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Support Vector Machine (SVM) dengan Ekstraktor Fitur KPCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Decision Tree (DT) dengan Ekstraktor Fitur PCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Decision Tree (DT) dengan Ekstraktor Fitur LDA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Decision Tree (DT) dengan Ekstraktor Fitur KPCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Random Forest (RF) dengan Ekstraktor Fitur PCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Random Forest (RF) dengan Ekstraktor Fitur LDA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Random Forest (RF) dengan Ekstraktor Fitur KPCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi K-Nearest Neighbor (KNN) dengan Ekstraktor Fitur PCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi K-Nearest Neighbor (KNN) dengan Ekstraktor Fitur LDA pada Dataset MNIST Menggunakan PyQt; dan Langkah-Langkah Implementasi K-Nearest Neighbor (KNN) dengan Ekstraktor Fitur KPCA pada Dataset MNIST Menggunakan PyQt. Pada Bab 7, Anda akan mempelajari: Langkah-Langkah Membangkitkan dan Menampilkan Citra Berderau; Langkah-Langkah Mengimplemantasikan Deteksi Tepi pada Citra; Langkah-Langkah Mengimplementasikan Segmentasi Menggunakan Ambang Batas Jamak dan Algoritma K-Means; Langkah-Langkah Mengimplementasikan Penekanan Derau pada Citra; Langkah-Langkah Mendeteksi Wajah, Mata, dan Mulut dengan Haar Cascades; Langkah-Langkah Mendeteksi Wajah Menggunakan Haar Cascades dengan PyQt; Langkah-Langkah Mendeteksi Mata dan Mulut Menggunakan Haar Cascades dengan PyQt; Langkah-Langkah Mengekstraksi Objek-Objek Terdeteksi; Langkah-Langkah Mendeteksi Fitur Citra dengan Harris Corner Detection; Langkah-Langkah Mendeteksi Fitur Citra dengan Shi-Tomasi Corner Detection; Langkah-Langkah Mendeteksi Fitur Citra dengan Scale-Invariant Feature Transform (SIFT) ; dan Langkah-Langkah Mendeteksi Fitur Citra dengan Accelerated Segment Test (FAST). BUKU 2: IMPLEMENTASI DEEP LEARNING MENGGUNAKAN SCIKIT-LEARN, KERAS, DAN TENSORFLOW DENGAN PYTHON GUI Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “The Practical Guides On Deep Learning Using SCIKIT-LEARN, KERAS, and TENSORFLOW with Python GUI” yang dapat dilihat di Amazon maupun Google Books. Dalam buku ini, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy, dan library lainnya untuk mengimplementasikan deep learning dalam mengenali rambu lalu lintas menggunakan dataset GTSRB, mendeteksi tumor otak menggunakan dataset MRI Brain Image, mengklasifikasikan gender, dan mengenali ekspresi wajah menggunakan dataset FER2013. Pada bab 1, Anda akan belajar membuat aplikasi GUI untuk menampilkan grafik garis menggunakan PyQt. Anda juga akan belajar bagaimana mengkonversi citra menjadi keabuan, menjadi ruang warna YUV, dan menjadi ruang warna HSV. Bab ini juga mengajarkan bagaimana menampilkan citra dan histogramnya dan merancang GUI untuk mengimplementasikannya. Pada bab 2, Anda akan belajar menggunakan TensorFlow, Keras, Scikit-Learn, Pandas, NumPy dan sejumlah pustaka lain untuk memprediksi digit-digit tulisan tangan menggunakan dataset MNIST. Pada bab 3, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, PIL, Pandas, NumPy, dan pustaka lain untuk mengenali rambu lalu lintas menggunakan dataset GTSRB dari Kaggle. Ada beberapa jenis rambu lalu lintas seperti batas kecepatan, dilarang masuk, rambu lalu lintas, belok kiri atau kanan, anak-anak menyeberang, tidak ada kendaraan berat yang lewat, dll. Klasifikasi rambu lalu lintas adalah proses untuk mengidentifikasi kelas rambu lalu lintas tersebut. Pada proyek Python ini, Anda akan membangun model jaringan saraf tiruan (deep neural network) yang dapat mengklasifikasikan rambu lalu lintas dalam citra ke dalam kategori yang berbeda. Dengan model ini, Anda akan dapat membaca dan memahami rambu lalu lintas yang merupakan pekerjaan yang sangat penting bagi semua kendaraan otonom. Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 4, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, Pandas, NumPy dan pustaka lainnya untuk melakukan pendeteksian tumor otak menggunakan dataset Brain Image MRI yang disediakan oleh Kaggle (https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 5, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan library lain untuk melakukan klasifikasi gender menggunakan dataset yang disediakan oleh Kaggle (https://www.kaggle.com/cashutosh/gender-classification-dataset). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 6, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan pustaka lain untuk melakukan pengenalan ekspresi wajah menggunakan dataset FER2013 yang disediakan oleh Kaggle (https://www.kaggle.com/nicolejyt/facialexpressionrecognition). Anda juga akan membangun sebuah GUI untuk tujuan ini. BUKU 3: PANDUAN PRAKTIS DEEP LEARNING MENGGUNAKAN SCIKIT-LEARN, KERAS, DAN TENSORFLOW DENGAN PYTHON GUI Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “STEP BY STEP TUTORIALS ON DEEP LEARNING USING SCIKIT-LEARN, KERAS, AND TENSORFLOW WITH PYTHON GUI” yang dapat dilihat di Amazon maupun Google Books. Dalam buku ini, Anda akan mempelajari cara menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy, dan library lainnya untuk mengimplementasikan deteksi wajah, mata, dan mulut menggunakan Haar Cascades, klasifikasi/prediksi buah, klasifikasi/prediksi kucing/anjing, klasifikasi/prediksi mebel, klasifikasi/prediksi mode (fashion). Pada bab 1, Anda akan belajar bagaimana menggunakan pustaka OpenCV, PIL, NumPy dan pustaka lain untuk melakukan deteksi wajah, mata, dan mulut menggunakan Haar Cascades dengan Python GUI (PyQt). Pada bab 2, Anda akan mempelajari bagaimana memanfaatkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan pustaka-pustaka lain untuk mengimplementasikan klasifikasi buah menggunakan dataset Fruits 360 yang disediakan oleh Kaggle (https://www.kaggle.com/moltean/fruits/code). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 3, Anda akan belajar menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk klasifikasi kucing/anjing menggunakan dataset yang disediakan oleh Kaggle (https://www.kaggle.com/chetankv/dogs-cats-images). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 4, Anda akan belajar menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan pustakan lain untuk mendeteksi atau mengklasifikasi mebel menggunakan dataset Furniture Detector yang disediakan oleh Kaggle (https://www.kaggle.com/akkithetechie/furniture-detector). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 5, Anda akan memanfaatkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah modul lain untuk melakukan klasifikasi terhadap citra-citra mode menggunakan dataset Fashion MNIST yang disediakan oleh Kaggle (https://www.kaggle.com/zalando-research/fashionmnist/code). Anda juga akan membangun sebuah GUI untuk tujuan ini.