Unimolecular Reactions


Book Description

This textbook covers the basics necessary for understanding the statistical theory of unimolecular reactions in its original and variational, phase-space and angular momentum-conserved incarnations. Because the emphasis is on "why" rather than "how to", there are many problems and answers to explore further. The book is targeted at graduate and advanced undergraduate students studying chemical dynamics, chemical kinetics and theoretical chemistry.




Modern Mass Spectrometry


Book Description

I Reactivity: E. Uggerud: Physical Organic Chemistry of the Gas Phase. Reactivity Trends for Organic Cations.- S. Petrie, D.K. Bohme: Mass Spectrometric Approaches to Interstellar Chemistry.- F. Turecek: Transient Intermediates of Chemical Reactions by Neutralization-Reionization Mass Spectrometry.- II Metalorganic Chemistry: D. Schröder, H. Schwarz: Diastereoselective Effects in Gas-Phase Ion Chemistry.- D.A. Plattner: Metalorganic Chemistry in the Gas Phase: Insight into Catalysis.- III Mass Spectrometric Methodology: T. Wyttenbach, M.T. Bowers: Gas-Phase Conformations: The Ion Mobility/Ion Chromatography Method.- P.B. Armentrout: Threshold Collision-Induced Dissociations for the Determination of Accurate Gas-Phase Binding Energies and Reaction Barriers.- IV Medicinal Chemistry: S.A. Trauger, T. Junker, G. Siuzdak: Investigating Viral Proteins and Intact Viruses with Mass Spectrometry M. Brönstrup: High-Throughput Mass Spectrometry for Compound Characterization in Drug Discovery.




Spectroscopy and Modeling of Biomolecular Building Blocks


Book Description

Spectroscopy and Modeling of Biomolecular Building Blocks presents an overview of recent advances in the intertwining of the following research fields: photon and electron spectroscopy, quantum chemistry, modelling and mass-spectrometry. The coupling of these disciplines offers a new point of view to the understanding of isolated elementary building blocks of biomolecules and their assemblies. It allows the unambiguous separation between intrinsic properties of biomolecular systems and those induced by the presence of their environment. The first chapters provide background in modelling (I), frequency-resolved spectroscopy using microwave, infrared and UV photons, time-resolved spectroscopy in the femtosecond domain and energy-resolved electron spectroscopy (II) and production of gas-phase neutral and ionic biomolecular species, mass-spectrometry, ion mobility and BIRD techniques (III). Chapter IV is devoted to case studies of gas-phase experimental investigations coupled to quantum or classical calculations. The topics are structural studies of nucleobases and oligonucleotides, peptides and proteins, sugars; neuromolecules; non-covalent complexes; chiral systems, interactions of low-energy electrons with biomolecules in the radiation chemistry context and very large gas-phase biomolecular systems. The fifth chapter concerns the link between gas-phase and liquid-phase. Different treatments of solvation are illustrated through examples pointing out the influence of progressive addition of water molecules upon properties of nucleobases, peptides, sugars and neuromolecules. - Offer a new perspective to the understanding of isolated elementary building blocks of bio molecules - Includes case studies of experimental investigations coupled to quantum or classical calculations




Atom - Molecule Collision Theory


Book Description

The broad field of molecular collisions is one of considerable current interest, one in which there is a great deal of research activity, both experi mental and theoretical. This is probably because elastic, inelastic, and reactive intermolecular collisions are of central importance in many of the fundamental processes of chemistry and physics. One small area of this field, namely atom-molecule collisions, is now beginning to be "understood" from first principles. Although the more general subject of the collisions of polyatomic molecules is of great im portance and intrinsic interest, it is still too complex from the viewpoint of theoretical understanding. However, for atoms and simple molecules the essential theory is well developed, and computational methods are sufficiently advanced that calculations can now be favorably compared with experimental results. This "coming together" of the subject (and, incidentally, of physicists and chemists !), though still in an early stage, signals that the time is ripe for an appraisal and review of the theoretical basis of atom-molecule collisions. It is especially important for the experimentalist in the field to have a working knowledge of the theory and computational methods required to describe the experimentally observable behavior of the system. By now many of the alternative theoretical approaches and computational procedures have been tested and intercompared. More-or-Iess optimal methods for dealing with each aspect are emerging. In many cases working equations, even schematic algorithms, have been developed, with assumptions and caveats delineated.




Advanced Fragmentation Methods in Biomolecular Mass Spectrometry


Book Description

Breaking down large biomolecules into fragments in a controlled manner is key to modern biomolecular mass spectrometry. This book is a high-level introduction, as well as a reference work for experienced users, to ECD, ETD, EDD, NETD, UVPD, SID, and other advanced fragmentation methods. It provides a comprehensive overview of their history, mechanisms, instrumentation, and key applications. With contributions from leading experts, this book will act as an authoritative guide to these methods. Aimed at postgraduate and professional researchers, mainly in academia, but also in industry, it can be used as supplementary reading for advanced students on mass spectrometry or analytical (bio)chemistry courses.




Neuroproteomics


Book Description

In this, the post-genomic age, our knowledge of biological systems continues to expand and progress. As the research becomes more focused, so too does the data. Genomic research progresses to proteomics and brings us to a deeper understanding of the behavior and function of protein clusters. And now proteomics gives way to neuroproteomics as we beg




Dissociative Recombination


Book Description

Proceedings of a NATO ARW held in Saint Jacut de la Mer, Brittany, France, May 3-8, 1992




Tandem Mass Spectrometry


Book Description

Tandem Mass Spectrometry - Molecular Characterization presents a comprehensive coverage of theory, instrumentation and description of experimental strategies and MS/MS data interpretation for the structural characterization of relevant molecular compounds. The areas covered include the analysis of drugs, metabolites, carbohydrates and protein post-translational modifications. The book series in Tandem Mass Spectrometry serves multiple groups of audiences; professional (academic and industry), graduate students and general readers interested in the use of modern mass spectrometry in solving critical questions of chemical and biological sciences.




Photoionization and Photo-Induced Processes in Mass Spectrometry


Book Description

Provides comprehensive coverage of laser-induced ionization processes for mass spectrometry analysis Drawing on the expertise of the leading academic and industrial research groups involved in the development of photoionization methods for mass spectrometry, this reference for analytical scientists covers both the theory and current applications of photo-induced ionization processes. It places widely used techniques such as MALDI side by side with more specialist approaches such as REMPI and RIMS, and discusses leading edge developments in ultrashort laser pulse desorption, to give readers a complete picture of the state of the technology. Photoionization and Photo-Induced Processes in Mass Spectrometry: Fundamentals and Applications starts with a complete overview of the fundamentals of the technique, covering the basics of the gas phase ionization as well as those of laser desorption and ablation, pulse photoionization, and single particle ionization. Numerous application examples from different analytical fields are described that showcase the power and the wide scope of photo ionization in mass spectrometry. -The first general reference book on photoionization techniques for mass spectrometry -Examines technologies and applications of gas phase resonance-enhanced multiphoton ionization mass spectrometry (REMPI-MS) and gas phase resonance ionization mass spectrometry (RIMS) -Provides complete coverage of popular techniques like MALDI -Discusses the current and potential applications of each technology, focusing on process and environmental analysis Photoionization and Photo-Induced Processes in Mass Spectrometry: Fundamentals and Applications is an excellent book for spectroscopists, analytical chemists, photochemists, physical chemists, and laser specialists.




Quadrupole Mass Spectrometry and Its Applications


Book Description

Quadrupole Mass Spectrometry and Its Applications provides a comprehensive discussion of quadrupoles and their applications. It proceeds from a general explanation of the action of radiofrequency quadrupole fields to the description of their utilization in mass analyzers—such as the quadrupole mass filter, the monopole, the three-dimensional quadrupole ion trap, and various time-of-flight spectrometers—and finally to the characteristic applications of quadrupoles. A multi-author format has been adopted to provide broader-than-usual viewpoint in the book. The book begins by explaining the principles of operation of quadrupole devices. These include ion trajectories and computer simulations of performance; analytical theory; numerical methods of calculation of performance, including the recently developed application of phase-space dynamics; and fringing fields and other field imperfections. Subsequent chapters provide design and performance evaluations of the mass filter, the monopole, ion traps, and time-of-flight instruments; and describe areas of application where quadrupole devices have made the greatest impact because of their particular advantages and disadvantages.