Through-Silicon Vias for 3D Integration


Book Description

A comprehensive guide to TSV and other enabling technologies for 3D integration Written by an expert with more than 30 years of experience in the electronics industry, Through-Silicon Vias for 3D Integration provides cutting-edge information on TSV, wafer thinning, thin-wafer handling, microbumping and assembly, and thermal management technologies. Applications to highperformance, high-density, low-power-consumption, wide-bandwidth, and small-form-factor electronic products are discussed. This book offers a timely summary of progress in all aspects of this fascinating field for professionals active in 3D integration research and development, those who wish to master 3D integration problem-solving methods, and anyone in need of a low-power, wide-bandwidth design and high-yield manufacturing process for interconnect systems. Coverage includes: Nanotechnology and 3D integration for the semiconductor industry TSV etching, dielectric-, barrier-, and seed-layer deposition, Cu plating, CMP, and Cu revealing TSVs: mechanical, thermal, and electrical behaviors Thin-wafer strength measurement Wafer thinning and thin-wafer handling Microbumping, assembly, and reliability Microbump electromigration Transient liquid-phase bonding: C2C, C2W, and W2W 2.5D IC integration with interposers 3D IC integration with interposers Thermal management of 3D IC integration 3D IC packaging




Through Silicon Vias


Book Description

Recent advances in semiconductor technology offer vertical interconnect access (via) that extend through silicon, popularly known as through silicon via (TSV). This book provides a comprehensive review of the theory behind TSVs while covering most recent advancements in materials, models and designs. Furthermore, depending on the geometry and physical configurations, different electrical equivalent models for Cu, carbon nanotube (CNT) and graphene nanoribbon (GNR) based TSVs are presented. Based on the electrical equivalent models the performance comparison among the Cu, CNT and GNR based TSVs are also discussed.




Through Silicon Vias


Book Description

Recent advances in semiconductor technology offer vertical interconnect access (via) that extend through silicon, popularly known as through silicon via (TSV). This book provides a comprehensive review of the theory behind TSVs while covering most recent advancements in materials, models and designs. Furthermore, depending on the geometry and physical configurations, different electrical equivalent models for Cu, carbon nanotube (CNT) and graphene nanoribbon (GNR) based TSVs are presented. Based on the electrical equivalent models the performance comparison among the Cu, CNT and GNR based TSVs are also discussed.




Three-Dimensional Integrated Circuit Design


Book Description

Three-Dimensional Integrated Circuit Design, Second Eition, expands the original with more than twice as much new content, adding the latest developments in circuit models, temperature considerations, power management, memory issues, and heterogeneous integration. 3-D IC experts Pavlidis, Savidis, and Friedman cover the full product development cycle throughout the book, emphasizing not only physical design, but also algorithms and system-level considerations to increase speed while conserving energy. A handy, comprehensive reference or a practical design guide, this book provides effective solutions to specific challenging problems concerning the design of three-dimensional integrated circuits. Expanded with new chapters and updates throughout based on the latest research in 3-D integration: - Manufacturing techniques for 3-D ICs with TSVs - Electrical modeling and closed-form expressions of through silicon vias - Substrate noise coupling in heterogeneous 3-D ICs - Design of 3-D ICs with inductive links - Synchronization in 3-D ICs - Variation effects on 3-D ICs - Correlation of WID variations for intra-tier buffers and wires - Offers practical guidance on designing 3-D heterogeneous systems - Provides power delivery of 3-D ICs - Demonstrates the use of 3-D ICs within heterogeneous systems that include a variety of materials, devices, processors, GPU-CPU integration, and more - Provides experimental case studies in power delivery, synchronization, and thermal characterization




Ultra-thin Chip Technology and Applications


Book Description

Ultra-thin chips are the "smart skin" of a conventional silicon chip. This book shows how very thin and flexible chips can be fabricated and used in many new applications in microelectronics, Microsystems, biomedical and other fields. It provides a comprehensive reference to the fabrication technology, post processing, characterization and the applications of ultra-thin chips.




Through-Silicon Vias for 3D Integration


Book Description

A comprehensive guide to TSV and other enabling technologies for 3D integration Written by an expert with more than 30 years of experience in the electronics industry, Through-Silicon Vias for 3D Integration provides cutting-edge information on TSV, wafer thinning, thin-wafer handling, microbumping and assembly, and thermal management technologies. Applications to highperformance, high-density, low-power-consumption, wide-bandwidth, and small-form-factor electronic products are discussed. This book offers a timely summary of progress in all aspects of this fascinating field for professionals active in 3D integration research and development, those who wish to master 3D integration problem-solving methods, and anyone in need of a low-power, wide-bandwidth design and high-yield manufacturing process for interconnect systems. Coverage includes: Nanotechnology and 3D integration for the semiconductor industry TSV etching, dielectric-, barrier-, and seed-layer deposition, Cu plating, CMP, and Cu revealing TSVs: mechanical, thermal, and electrical behaviors Thin-wafer strength measurement Wafer thinning and thin-wafer handling Microbumping, assembly, and reliability Microbump electromigration Transient liquid-phase bonding: C2C, C2W, and W2W 2.5D IC integration with interposers 3D IC integration with interposers Thermal management of 3D IC integration 3D IC packaging




Advanced MEMS Packaging


Book Description

A comprehensive guide to 3D MEMS packaging methods and solutions Written by experts in the field, Advanced MEMS Packaging serves as a valuable reference for those faced with the challenges created by the ever-increasing interest in MEMS devices and packaging. This authoritative guide presents cutting-edge MEMS (microelectromechanical systems) packaging techniques, such as low-temperature C2W and W2W bonding and 3D packaging. This definitive resource helps you select reliable, creative, high-performance, robust, and cost-effective packaging techniques for MEMS devices. The book will also aid in stimulating further research and development in electrical, optical, mechanical, and thermal designs as well as materials, processes, manufacturing, testing, and reliability. Among the topics explored: Advanced IC and MEMS packaging trends MEMS devices, commercial applications, and markets More than 360 MEMS packaging patents and 10 3D MEMS packaging designs TSV for 3D MEMS packaging MEMS wafer thinning, dicing, and handling Low-temperature C2C, C2W, and W2W bonding Reliability of RoHS-compliant MEMS packaging Micromachining and water bonding techniques Actuation mechanisms and integrated micromachining Bubble switch, optical switch, and VOA MEMS packaging Bolometer and accelerameter MEMS packaging Bio-MEMS and biosensor MEMS packaging RF MEMS switches, tunable circuits, and packaging




Wafer Level 3-D ICs Process Technology


Book Description

This book focuses on foundry-based process technology that enables the fabrication of 3-D ICs. The core of the book discusses the technology platform for pre-packaging wafer lever 3-D ICs. However, this book does not include a detailed discussion of 3-D ICs design and 3-D packaging. This is an edited book based on chapters contributed by various experts in the field of wafer-level 3-D ICs process technology. They are from academia, research labs and industry.




Handbook of 3D Integration, Volume 1


Book Description

The first encompassing treatise of this new, but very important field puts the known physical limitations for classic 2D electronics into perspective with the requirements for further electronics developments and market necessities. This two-volume handbook presents 3D solutions to the feature density problem, addressing all important issues, such as wafer processing, die bonding, packaging technology, and thermal aspects. It begins with an introductory part, which defines necessary goals, existing issues and relates 3D integration to the semiconductor roadmap of the industry. Before going on to cover processing technology and 3D structure fabrication strategies in detail. This is followed by fields of application and a look at the future of 3D integration. The contributions come from key players in the field, from both academia and industry, including such companies as Lincoln Labs, Fraunhofer, RPI, ASET, IMEC, CEA-LETI, IBM, and Renesas.




Strain Effect in Semiconductors


Book Description

Strain Effect in Semiconductors: Theory and Device Applications presents the fundamentals and applications of strain in semiconductors and semiconductor devices that is relevant for strain-enhanced advanced CMOS technology and strain-based piezoresistive MEMS transducers. Discusses relevant applications of strain while also focusing on the fundamental physics pertaining to bulk, planar, and scaled nano-devices. Hence, this book is relevant for current strained Si logic technology as well as for understanding the physics and scaling for future strained nano-scale devices.