Time Frequency and Wavelets in Biomedical Signal Processing


Book Description

Biomedical Engineering Time Frequency and Wavelets in Biomedical Signal Processing IEEE Press Series in Biomedical Engineering Metin Akay, Series Editor Endorsed by the IEEE Engineering in Medicine and Biology Society Brimming with top articles from experts in signal processing and biomedical engineering, Time Frequency and Wavelets in Biomedical Signal Processing introduces time-frequency, time-scale, wavelet transform methods, and their applications in biomedical signal processing. This edited volume incorporates the most recent developments in the field to illustrate thoroughly how the use of these time-frequency methods is currently improving the quality of medical diagnosis, including technologies for assessing pulmonary and respiratory conditions, EEGs, hearing aids, MRIs, mammograms, X rays, evoked potential signals analysis, neural networks applications, among other topics. Time Frequency and Wavelets in Biomedical Signal Processing will be of particular interest to signal processing engineers, biomedical engineers, and medical researchers. Topics covered include: Time-frequency analysis methods and biomedical applications Wavelets, wavelet packets, and matching pursuits and biomedical applications Wavelets and medical imaging Wavelets, neural networks, and fractals




Wavelet Transforms and Time-Frequency Signal Analysis


Book Description

The last fifteen years have produced major advances in the mathematical theory of wavelet transforms and their applications to science and engineering. In an effort to inform researchers in mathematics, physics, statistics, computer science, and engineering and to stimulate furtherresearch, an NSF-CBMS Research Conference on Wavelet Analysis was organized at the University of Central Florida in May 1998. Many distinguished mathematicians and scientists from allover the world participated in the conference and provided a digest of recent developments, open questions, and unsolved problems in this rapidly growing and important field. As a follow-up project, this monograph was developed from manuscripts sub mitted by renowned mathematicians and scientists who have made important contributions to the subject of wavelets, wavelet transforms, and time-frequency signal analysis. This publication brings together current developments in the theory and applications of wavelet transforms and in the field of time-frequency signal analysis that are likely to determine fruitful directions for future advanced study and research.




Biomedical Signal and Image Processing


Book Description

Written for senior-level and first year graduate students in biomedical signal and image processing, this book describes fundamental signal and image processing techniques that are used to process biomedical information. The book also discusses application of these techniques in the processing of some of the main biomedical signals and images, such as EEG, ECG, MRI, and CT. New features of this edition include the technical updating of each chapter along with the addition of many more examples, the majority of which are MATLAB based.




Signal Processing for Neuroscientists


Book Description

Signal Processing for Neuroscientists introduces analysis techniques primarily aimed at neuroscientists and biomedical engineering students with a reasonable but modest background in mathematics, physics, and computer programming. The focus of this text is on what can be considered the 'golden trio' in the signal processing field: averaging, Fourier analysis, and filtering. Techniques such as convolution, correlation, coherence, and wavelet analysis are considered in the context of time and frequency domain analysis. The whole spectrum of signal analysis is covered, ranging from data acquisition to data processing; and from the mathematical background of the analysis to the practical application of processing algorithms. Overall, the approach to the mathematics is informal with a focus on basic understanding of the methods and their interrelationships rather than detailed proofs or derivations. One of the principle goals is to provide the reader with the background required to understand the principles of commercially available analyses software, and to allow him/her to construct his/her own analysis tools in an environment such as MATLAB®. - Multiple color illustrations are integrated in the text - Includes an introduction to biomedical signals, noise characteristics, and recording techniques - Basics and background for more advanced topics can be found in extensive notes and appendices - A Companion Website hosts the MATLAB scripts and several data files: http://www.elsevierdirect.com/companion.jsp?ISBN=9780123708670




Applications in Time-Frequency Signal Processing


Book Description

Because most real-world signals, including speech, sonar, communication, and biological signals, are non-stationary, traditional signal analysis tools such as Fourier transforms are of limited use because they do not provide easily accessible information about the localization of a given frequency component. A more suitable approach for those studying non-stationary signals is the use of time frequency representations that are functions of both time and frequency. Applications in Time-Frequency Signal Processing investigates the use of various time-frequency representations, such as the Wigner distribution and the spectrogram, in diverse application areas. Other books tend to focus on theoretical development. This book differs by highlighting particular applications of time-frequency representations and demonstrating how to use them. It also provides pseudo-code of the computational algorithms for these representations so that you can apply them to your own specific problems. Written by leaders in the field, this book offers the opportunity to learn from experts. Time-Frequency Representation (TFR) algorithms are simplified, enabling you to understand the complex theories behind TFRs and easily implement them. The numerous examples and figures, review of concepts, and extensive references allow for easy learning and application of the various time-frequency representations.




Biomedical Signal Processing


Book Description

This book presents the theoretical basis and applications of biomedical signal analysis and processing. Initially, the nature of the most common biomedical signals, such as electroencephalography, electromyography, electrocardiography and others, is described. The theoretical basis of linear signal processing is summarized, with continuous and discrete representation, linear filters and convolutions, Fourier and Wavelets transforms. Machine learning concepts are also presented, from classic methods to deep neural networks. Finally, several applications in neuroscience are presented and discussed, involving diagnosis and therapy, in addition to other applications. Features: Explains signal processing of neuroscience applications using modern data science techniques. Provides comprehensible review on biomedical signals nature and acquisition aspects. Focusses on selected applications of neurosciences, cardiovascular and muscle-related biomedical areas. Includes computational intelligence, machine learning and biomedical signal processing and analysis. Reviews theoretical basis of deep learning and state-of-the-art biomedical signal processing and analysis. This book is aimed at researchers, graduate students in biomedical signal processing, signal processing, electrical engineering, neuroscience and computer science.




EEG Signal Processing


Book Description

Electroencephalograms (EEGs) are becoming increasingly important measurements of brain activity and they have great potential for the diagnosis and treatment of mental and brain diseases and abnormalities. With appropriate interpretation methods they are emerging as a key methodology to satisfy the increasing global demand for more affordable and effective clinical and healthcare services. Developing and understanding advanced signal processing techniques for the analysis of EEG signals is crucial in the area of biomedical research. This book focuses on these techniques, providing expansive coverage of algorithms and tools from the field of digital signal processing. It discusses their applications to medical data, using graphs and topographic images to show simulation results that assess the efficacy of the methods. Additionally, expect to find: explanations of the significance of EEG signal analysis and processing (with examples) and a useful theoretical and mathematical background for the analysis and processing of EEG signals; an exploration of normal and abnormal EEGs, neurological symptoms and diagnostic information, and representations of the EEGs; reviews of theoretical approaches in EEG modelling, such as restoration, enhancement, segmentation, and the removal of different internal and external artefacts from the EEG and ERP (event-related potential) signals; coverage of major abnormalities such as seizure, and mental illnesses such as dementia, schizophrenia, and Alzheimer’s disease, together with their mathematical interpretations from the EEG and ERP signals and sleep phenomenon; descriptions of nonlinear and adaptive digital signal processing techniques for abnormality detection, source localization and brain-computer interfacing using multi-channel EEG data with emphasis on non-invasive techniques, together with future topics for research in the area of EEG signal processing. The information within EEG Signal Processing has the potential to enhance the clinically-related information within EEG signals, thereby aiding physicians and ultimately providing more cost effective, efficient diagnostic tools. It will be beneficial to psychiatrists, neurophysiologists, engineers, and students or researchers in neurosciences. Undergraduate and postgraduate biomedical engineering students and postgraduate epileptology students will also find it a helpful reference.




Biomedical Signal Processing


Book Description

Sophisticated techniques for signal processing are now available to the biomedical specialist! Written in an easy-to-read, straightforward style, Biomedical Signal Processing presents techniques to eliminate background noise, enhance signal detection, and analyze computer data, making results easy to comprehend and apply. In addition to examining techniques for electrical signal analysis, filtering, and transforms, the author supplies an extensive appendix with several computer programs that demonstrate techniques presented in the text.




Time-Frequency Analysis


Book Description

Covering a period of about 25 years, during which time-frequency has undergone significant developments, this book is principally addressed to researchers and engineers interested in non-stationary signal analysis and processing. It is written by recognized experts in the field.




Wavelets and Signal Processing


Book Description

Provides a digest of the current developments, open questions and unsolved problems likely to determine a new frontier for future advanced study and research in the rapidly growing areas of wavelets, wavelet transforms, signal analysis, and signal and image processing. Ideal reference work for advanced students and practitioners in wavelets, and wavelet transforms, signal processing and time-frequency signal analysis. Professionals working in electrical and computer engineering, applied mathematics, computer science, biomedical engineering, physics, optics, and fluid mechanics will also find the book a valuable resource.