Time-resolved Quantum Nanoelectronics in Electromagnetic Environments


Book Description

Quantum nanoelectronics is in a phase of great expansion, supported mainlyby the development of quantum computing. A high degree of precision isrequired to achieve current objectives, but on the other hand, the experi-ences are also more complex than ever. Nuremical tools seem necessary toachieve the required understanding while dealing with such complexity. Thetime scales involved are getting shorter and are getting closer to the intrinsicquantum time scales of the device, such as time of flight. Our group's pre-vious work has simulated time-dependent electron transport on a quantumscale. This thesis aims to improve the previous algorithms to obtain greateraccuracy and a better description of the systems by including the electronicenvironment. This work is divided into three main areas. First, we improveof numerical time-dependent simulation tools to take into account an elec-tronic environment in a self-consistent way. The new algorithm can achievearbitrary accuracy in a controlled way. Second, the new algorithm is used todemonstrate the existence of new physical phenomena. We study Josephsonjunctions in different environments to enhance the role of quasi-particles, theeffect of a very short pulse, and to study topological junction characteriza-tion techniques. Finally, various developments are being studied to integratethe phenomenon of decoherence and quantum noise into the simulations.




Numerical Methods for Time-Resolved Quantum Nanoelectronics


Book Description

This thesis develops novel numerical techniques for simulating quantum transport in the time domain and applies them to pertinent physical systems such as flying qubits in electronic interferometers and superconductor/semiconductor junctions hosting Majorana bound states (the key ingredient for topological quantum computing). In addition to exploring the rich new physics brought about by time dependence, the thesis also develops software that can be used to simulate nanoelectronic systems with arbitrary geometry and time dependence, offering a veritable toolbox for exploring this rapidly growing domain.




Emerging Concepts in Time-resolved Quantum Nanoelectronics


Book Description

With the recent technical progress, single electron sources have moved fromtheory to the lab. Conceptually new types of experiments where one probesdirectly the internal quantum dynamics of the devices are within grasp. In thisthesis we develop the analytical and numerical tools for handling suchsituations. The simulations require appropriate spatial resolution for thesystems, and simulated times long enough so that one can probe their internalcharacteristic times. So far the standard theoretical approach used to treatsuch problems numerically--known as Keldysh or NEGF (Non Equilibrium Green'sFunctions) formalism--has not been very successful mainly because of aprohibitive computational cost. We propose a reformulation of the NEGFtechnique in terms of the electronic wave functions of the system in anenergy--time representation. The numerical algorithm we obtain scales nowlinearly with the simulated time and the volume of the system, and makessimulation of systems with 105-106 atoms/sites feasible. We leverage thistool to propose new intriguing effects and experiments. In particular weintroduce the concept of dynamical modification of interference pattern of aquantum system. For instance, we show that when raising a DC voltage V to anelectronic interferometer, the transient current responseoscillates as cos(eVt/ħ). We expect a wealth of new effects whennanoelectronic circuits are probed fast enough. The tools and conceptsdeveloped in this work shall play a key role in the analysis and proposal ofupcoming experiments.




Nanotechnology-based Sensors for Detection of Environmental Pollution


Book Description

Nanotechnology-based Sensors for Efficient Detection of Environmental Pollution discusses the use of nanotechnology to generate sensors capable of performing efficient detection of different types of environmental pollutants. Nanomaterial’s characteristics such as large surface area, good reactivity, and possibility to suffer chemical surface modification to recognize different types of molecules are useful, especially to perform the detection of specific environmental pollutants. Innovative and efficient ways to detect environmental pollution are urgently needed for sustainability and the nanotechnology field has an enormous potential to offer strategic solutions. Nanotechnology-based sensors offer an efficient way of detecting the presence of contaminants and determine its structure and chemical nature is by applying nanotechnology and/or nanobiotechnology. This book will contain 5 parts: the first one will be dedicated to exploring environmental pollution as a threat to life on Earth and main contaminants (inorganic, organic or pathogens) and the risk they represent to living beings. The second part will be dedicated to nanotechnology allowing pollutants’ detection covering a brief history of nanotechnology-based sensors, different types of nanotechnology-based sensor (optical, electrochemical, and magnetic), nanotechnology-based sensors’ design and fabrication and nano biosensors. The third part will be focused on important specific pollutants (pesticides, heavy metal, dyes, toxic gas, pharmaceutical waste, petroleum hydrocarbons, and pathogenic microbes) and their detection by nanotechnology-based sensors. The fourth part will be dedicated to important nanomaterials in nanotechnology-based sensors, exploring carbon-based and non-carbon-based material in nanoscale (graphene, carbon nanotubes, quantum dots, magnetic nanomaterials, non-magnetic nanoparticles) and also point-of-care sensors and functionalization to generate optimized nanotechnology-based sensors to pollutants’ detection. The fifth and last part of Nanotechnology-based Sensors for Efficient Detection of Environmental Pollution will address relevant practical aspects related to nanotechnology-based sensors, covering advantages and challenges, safety, economic and commercial aspects related to the field and also sustainability, highlighting green nanomaterials on nanotechnology-based sensors. Provides a comprehensive, multidisciplinary review of nanotechnology-based sensors Supplies readers extensive knowledge on detecting harmful pollutants in different environments using nanotechnology-based sensors Presents chapters dedicated to the detection of pollutants different from toxic gas and pharmaceutical products, such as pesticides, heavy metals, dyes, pathogens, and petroleum hydrocarbons Introduces information on pollutants and the threats they represent to living beings, nanotechnology-based sensor’s design and fabrication, a brief history of the field, and practical issues related to the field, such as economics, safety, and challenges




Silicon Nanoelectronics


Book Description

Technological advancement in chip development, primarily based on the downscaling of the feature size of transistors, is threatening to come to a standstill as we approach the limits of conventional scaling. For example, when the number of electrons in a device's active region is reduced to less than ten electrons (or holes), quantum fluctuation errors will occur, and when gate insulator thickness becomes too insignificant to block quantum mechanical tunneling, unacceptable leakage will occur. Fortunately, there is truth in the old adage that whenever a door closes, a window opens somewhere else. In this case, that window opening is nanotechnology. Silicon Nanoelectronics takes a look at at the recent development of novel devices and materials that hold great promise for the creation of still smaller and more powerful chips. Silicon nanodevices are positoned to be particularly relevant in consideration of the existing silicon process infrastructure already in place throughout the semiconductor industry and silicon's consequent compatibility with current CMOS circuits. This is reinforced by the nearly perfect interface that can exist between natural oxide and silicon. Presenting the contributions of more than 20 leading academic and corporate researchers from the United States and Japan, Silicon Nanoelectronics offers a comprehensive look at this emergent technology. The text includes extensive background information on the physics of silicon nanodevices and practical CMOS scaling. It considers such issues as quantum effects and ballistic transport and resonant tunneling in silicon nanotechnology. A significant amount of attention is given to the all-important silicon single electron transistors and the devices that utilize them. In offering an update of the current state-of-the-art in the field of silicon nanoelectronics, this volume serves well as a concise reference for students, scientists, engineers, and specialists in various fields, in




Fluorescent Nanodiamonds


Book Description

The most comprehensive reference on fluorescent nanodiamond physical and chemical properties and contemporary applications Fluorescent nanodiamonds (FNDs) have drawn a great deal of attention over the past several years, and their applications and development potential are proving to be manifold and vast. The first and only book of its kind, Fluorescent Nanodiamonds is a comprehensive guide to the basic science and technical information needed to fully understand the fundamentals of FNDs and their potential applications across an array of domains. In demonstrating the importance of FNDs in biological applications, the authors bring together all relevant chemistry, physics, materials science and biology. Nanodiamonds are produced by powerful cataclysmic events such as explosions, volcanic eruptions and meteorite impacts. They also can be created in the lab by high-pressure high-temperature treatment of graphite or detonating an explosive in a reactor vessel. A single imperfection can give a nanodiamond a specific, isolated color center which allows it to function as a single, trapped atom. Much smaller than the thickness of a human hair, a nanodiamond can have a huge surface area that allows it to bond with a variety of other materials. Because of their non-toxicity, nanodiamonds may be useful in biomedical applications, such as drug delivery and gene therapy. The most comprehensive reference on a topic of rapidly increasing interest among academic and industrial researchers across an array of fields Includes numerous case studies and practical examples from many areas of research and industrial applications, as well as fascinating and instructive historical perspectives Each chapter addresses, in-depth, a single integral topic including the fundamental properties, synthesis, mechanisms and functionalisation of FNDs The first book published by the key patent holder with his research group in the field of FNDs Fluorescent Nanodiamonds is an important working resource for a broad range of scientists and engineers in industry and academia. It will also be a welcome reference for instructors in chemistry, physics, materials science, biology and related fields.










Transmission Electron Microscopy in Micro-nanoelectronics


Book Description

Today, the availability of bright and highly coherent electron sources and sensitive detectors has radically changed the type and quality of the information which can be obtained by transmission electron microscopy (TEM). TEMs are now present in large numbers not only in academia, but also in industrial research centers and fabs. This book presents in a simple and practical way the new quantitative techniques based on TEM which have recently been invented or developed to address most of the main challenging issues scientists and process engineers have to face to develop or optimize semiconductor layers and devices. Several of these techniques are based on electron holography; others take advantage of the possibility of focusing intense beams within nanoprobes. Strain measurements and mappings, dopant activation and segregation, interfacial reactions at the nanoscale, defect identification and specimen preparation by FIB are among the topics presented in this book. After a brief presentation of the underlying theory, each technique is illustrated through examples from the lab or fab.




Quantum Mechanics with Applications to Nanotechnology and Information Science


Book Description

Quantum mechanics transcends and supplants classical mechanics at the atomic and subatomic levels. It provides the underlying framework for many subfields of physics, chemistry and materials science, including condensed matter physics, atomic physics, molecular physics, quantum chemistry, particle physics, and nuclear physics. It is the only way we can understand the structure of materials, from the semiconductors in our computers to the metal in our automobiles. It is also the scaffolding supporting much of nanoscience and nanotechnology. The purpose of this book is to present the fundamentals of quantum theory within a modern perspective, with emphasis on applications to nanoscience and nanotechnology, and information-technology. As the frontiers of science have advanced, the sort of curriculum adequate for students in the sciences and engineering twenty years ago is no longer satisfactory today. Hence, the emphasis on new topics that are not included in older reference texts, such as quantum information theory, decoherence and dissipation, and on applications to nanotechnology, including quantum dots, wires and wells. This book provides a novel approach to Quantum Mechanics whilst also giving readers the requisite background and training for the scientists and engineers of the 21st Century who need to come to grips with quantum phenomena The fundamentals of quantum theory are provided within a modern perspective, with emphasis on applications to nanoscience and nanotechnology, and information-technology Older books on quantum mechanics do not contain the amalgam of ideas, concepts and tools necessary to prepare engineers and scientists to deal with the new facets of quantum mechanics and their application to quantum information science and nanotechnology As the frontiers of science have advanced, the sort of curriculum adequate for students in the sciences and engineering twenty years ago is no longer satisfactory today There are many excellent quantum mechanics books available, but none have the emphasis on nanotechnology and quantum information science that this book has