Time-resolved Temperature Measurements and Thermal Imaging Using Nano-thermometers in Different Environments


Book Description

Temperature is one of the fundamental variables which carries thermodynamic information of a system. Temperature sensing and monitoring in a sub-micron scale are crucial to understanding phenomena such as thermal profile, heat dissipation, and distribution and thermodynamic transitions. This dissertation focuses on real-time temperature measurements in the nanoscale regime in various environments. Two erbium-based luminescent nanothermometers were used as temperature sensors: upconverting nanoparticles (NaYF4:Er3+, Yb3+) and AlGaN:Er3+ films. These temperature sensors use the luminescence intensity ratio (LIR) technique which exclusively follows the Boltzmann distribution equation for the calculation of temperature. The upconverting particles were introduced with a new universal calibration method that can overcome the uncertainty issues in extreme environments (such as limited excitation period and short acquisition time). The reliability of the method was confirmed by its application in temperature measurement in an electrospray jet which has a fluid velocity that is changing as it moves towards the tip. We found out the there was a formation of a microcavity at the tip of the cone, where the temperature rise was observed. The findings were supported by time-resolved energy balance equations. Next, we used AlGaN:Er3+ film to study the heat dissipation process in two universal media: air and water. We used our newly developed time-resolved temperature measurement technique and thermal imaging technique (introduced in this dissertation) to investigate the systems. Two gold nanosamples with the various extent of adhesion to the film were used. Both cases showed that heat dissipates faster in the air than in water, but the rate of heat dissipation is faster for the particles that adhered well to the film than to the particles loosely placed on it. Finally, for the ongoing project, we modified our thermal imaging technique to study circular dichroism in chiral gold structures. We mapped the photothermal effect on the gold structures, caused by circular dichroism when illuminated with circularly polarized laser light.




Thermometry at the Nanoscale


Book Description

Covers the fundamentals of measuring temperature at the nanoscale, luminescence-based and non-luminescence based thermometry techniques, and applications.




Fluorescent Nanodiamonds


Book Description

The most comprehensive reference on fluorescent nanodiamond physical and chemical properties and contemporary applications Fluorescent nanodiamonds (FNDs) have drawn a great deal of attention over the past several years, and their applications and development potential are proving to be manifold and vast. The first and only book of its kind, Fluorescent Nanodiamonds is a comprehensive guide to the basic science and technical information needed to fully understand the fundamentals of FNDs and their potential applications across an array of domains. In demonstrating the importance of FNDs in biological applications, the authors bring together all relevant chemistry, physics, materials science and biology. Nanodiamonds are produced by powerful cataclysmic events such as explosions, volcanic eruptions and meteorite impacts. They also can be created in the lab by high-pressure high-temperature treatment of graphite or detonating an explosive in a reactor vessel. A single imperfection can give a nanodiamond a specific, isolated color center which allows it to function as a single, trapped atom. Much smaller than the thickness of a human hair, a nanodiamond can have a huge surface area that allows it to bond with a variety of other materials. Because of their non-toxicity, nanodiamonds may be useful in biomedical applications, such as drug delivery and gene therapy. The most comprehensive reference on a topic of rapidly increasing interest among academic and industrial researchers across an array of fields Includes numerous case studies and practical examples from many areas of research and industrial applications, as well as fascinating and instructive historical perspectives Each chapter addresses, in-depth, a single integral topic including the fundamental properties, synthesis, mechanisms and functionalisation of FNDs The first book published by the key patent holder with his research group in the field of FNDs Fluorescent Nanodiamonds is an important working resource for a broad range of scientists and engineers in industry and academia. It will also be a welcome reference for instructors in chemistry, physics, materials science, biology and related fields.




Close range 3D thermography: real-time reconstruction of high fidelity 3D thermograms


Book Description

Infrared thermography enables the non-contact measurement of an object’s surface temperature and presents the results in form of thermal images. The analysis of these images provides valuable information about an object’s thermal state. However, the fidelity of the thermal images strongly depends on the pose of the thermographic camera with respect to the surface. 3D thermography offers the possibility to overcome this and other limitations that affect conventional 2D thermography but most 3D thermographic systems developed so far generate 3D thermograms from a single perspective or from few noncontiguous points of view and do not operate in real time. As a result, the 3D thermograms they generate do not offer much advantage over conventional thermal images. However, recent technological advances have unlocked the possibility of implementing affordable handheld 3D thermal imaging systems that can be easily maneuvered around an object and that can generate high-fidelity 3D thermograms in real time. This thesis explores various aspects involved in the real-time generation of high-fidelity 3D thermograms at close range using a handheld 3D thermal imaging system, presents the results of scanning an operating industrial furnace and discusses the problems associated with the generation of 3D thermograms of large objects with complex geometries.




Luminescence Thermometry


Book Description

Luminescence Thermometry: Methods, Materials, and Applications presents the state-of-the art applications of luminescence thermometry, giving a detailed explanation of luminescence spectroscopic schemes for the read-out of temperature, while also describing the diverse materials that are capable of sensing temperature via luminescence. Chapters cover the fundamentals of temperature, traditional thermometers and their figures of merit, a concise description of optical thermometry methods, luminescence and instrumentation, and an explanation of the ways in which increases in temperature quench luminescence. Additional sections focus on materials utilized for luminescence thermometry and the broad range of applications for luminescence thermometry, including temperature measurement at the nanoscale and the application of multifunctional luminescent materials. - Provides an overview of luminescence thermometry applications, including high-temperature, biomedical, nanoscale and multifunctional - Delves into luminescence thermometry by materials group, including Rare-earth and transition Metal Ion Doped, Semiconductors, Quantum Dots and Organic materials - Gives a concise introduction of the latest methods of temperature measurement, including luminescence spectroscopic schemes and methods of analysis




Handbook of Laser Micro- and Nano-Engineering


Book Description

This handbook provides a comprehensive review of the entire field of laser micro and nano processing, including not only a detailed introduction to individual laser processing techniques but also the fundamentals of laser-matter interaction and lasers, optics, equipment, diagnostics, as well as monitoring and measurement techniques for laser processing. Consisting of 11 sections, each composed of 4 to 6 chapters written by leading experts in the relevant field. Each main part of the handbook is supervised by its own part editor(s) so that high-quality content as well as completeness are assured. The book provides essential scientific and technical information to researchers and engineers already working in the field as well as students and young scientists planning to work in the area in the future. Lasers found application in materials processing practically since their invention in 1960, and are currently used widely in manufacturing. The main driving force behind this fact is that the lasers can provide unique solutions in material processing with high quality, high efficiency, high flexibility, high resolution, versatility and low environmental load. Macro-processing based on thermal process using infrared lasers such as CO2 lasers has been the mainstream in the early stages, while research and development of micro- and nano-processing are becoming increasingly more active as short wavelength and/or short pulse width lasers have been developed. In particular, recent advances in ultrafast lasers have opened up a new avenue to laser material processing due to the capabilities of ultrahigh precision micro- and nanofabrication of diverse materials. This handbook is the first book covering the basics, the state-of-the-art and important applications of the dynamic and rapidly expanding discipline of laser micro- and nanoengineering. This comprehensive source makes readers familiar with a broad spectrum of approaches to solve all relevant problems in science and technology. This handbook is the ultimate desk reference for all people working in the field.




21st Century Nanoscience – A Handbook


Book Description

This 21st Century Nanoscience Handbook will be the most comprehensive, up-to-date large reference work for the field of nanoscience. Handbook of Nanophysics, by the same editor, published in the fall of 2010, embraced as the first comprehensive reference to consider both fundamental and applied aspects of nanophysics. This follow-up project has been conceived as a necessary expansion and full update that considers the significant advances made in the field since 2010. It goes well beyond the physics as warranted by recent developments in the field. The fifth volume in a ten-volume set covers exotic nanostructures and quantum systems. Key Features: Provides the most comprehensive, up-to-date large reference work for the field. Chapters written by international experts in the field. Emphasises presentation and real results and applications. This handbook distinguishes itself from other works by its breadth of coverage, readability and timely topics. The intended readership is very broad, from students and instructors to engineers, physicists, chemists, biologists, biomedical researchers, industry professionals, governmental scientists, and others whose work is impacted by nanotechnology. It will be an indispensable resource in academic, government, and industry libraries worldwide. The fields impacted by nanoscience extend from materials science and engineering to biotechnology, biomedical engineering, medicine, electrical engineering, pharmaceutical science, computer technology, aerospace engineering, mechanical engineering, food science, and beyond.




Non-Invasive Thermometry of the Human Body


Book Description

This exciting book describes the latest technology in non-invasive thermometry that measures temperature distribution, with discussions focusing on image-based techniques. This is the first book devoted entirely to this topic. An international team of experts detail all important techniques for possible non-invasive thermometry. Descriptions of each technique explain in depth the principles of measurement, the measurement system, obtained temperature image, and the future prospects for the method.




Thermoplasmonics


Book Description

Plasmonics is an important branch of optics concerned with the interaction of metals with light. Under appropriate illumination, metal nanoparticles can exhibit enhanced light absorption, becoming nanosources of heat that can be precisely controlled. This book provides an overview of the exciting new field of thermoplasmonics and a detailed discussion of its theoretical underpinning in nanophotonics. This topic has developed rapidly in the last decade, and is now a highly-active area of research due to countless applications in nanoengineering and nanomedicine. These important applications include photothermal cancer therapy, drug and gene delivery, nanochemistry and photothermal imaging. This timely and self-contained text is suited to all researchers and graduate students working in plasmonics, nano-optics and thermal-induced processes at the nanoscale.




Crystal Field Analysis


Book Description