Time-Varying Discrete Linear Systems


Book Description

Discrete-time systems arise as a matter of course in modelling biological or economic processes. For systems and control theory they are of major importance, particularly in connection with digital control applications. If sampling is performed in order to control periodic processes, almost periodic systems are obtained. This is a strong motivation to investigate the discrete-time systems with time-varying coefficients. This research monograph contains a study of discrete-time nodes, the discrete counterpart of the theory elaborated by Bart, Gohberg and Kaashoek for the continuous case, discrete-time Lyapunov and Riccati equations, discrete-time Hamiltonian systems in connection with input-output operators and associated Hankel and Toeplitz operators. All these tools aim to solve the problems of stabilization and attenuation of disturbances in the framework of H2- and H-control theory. The book is the first of its kind to be devoted to these topics and consists mainly of original, recently obtained results.




Linear Time Varying Systems and Sampled-data Systems


Book Description

This monograph considers linear optimal regulators, differential games and develops the theory for time-varying systems and jump systems.




Time-Dependent Switched Discrete-Time Linear Systems: Control and Filtering


Book Description

This book focuses on the basic control and filtering synthesis problems for discrete-time switched linear systems under time-dependent switching signals. Chapter 1, as an introduction of the book, gives the backgrounds and motivations of switched systems, the definitions of the typical time-dependent switching signals, the differences and links to other types of systems with hybrid characteristics and a literature review mainly on the control and filtering for the underlying systems. By summarizing the multiple Lyapunov-like functions (MLFs) approach in which different requirements on comparisons of Lyapunov function values at switching instants, a series of methodologies are developed for the issues on stability and stabilization, and l2-gain performance or tube-based robustness for l∞ disturbance, respectively, in Chapters 2 and 3. Chapters 4 and 5 are devoted to the control and filtering problems for the time-dependent switched linear systems with either polytopic uncertainties or measurable time-varying parameters in different sense of disturbances. The asynchronous switching problem, where there is time lag between the switching of the currently activated system mode and the controller/filter to be designed, is investigated in Chapter 6. The systems with various time delays under typical time-dependent switching signals are addressed in Chapter 7.




Time-Variant Systems and Interpolation


Book Description

Six papers deal with interrelated problems of modern operator theory, complex analysis, and system theory at a level accessible to advanced mathematicians and engineers. They provide a cross-section of recent advances in the understanding of the theory of time-varying systems and time-varying of analogues of interpolation problems. No index. Annotation copyrighted by Book News, Inc., Portland, OR







Discrete-Time Markov Jump Linear Systems


Book Description

This will be the most up-to-date book in the area (the closest competition was published in 1990) This book takes a new slant and is in discrete rather than continuous time




Advanced Topics in Control Systems Theory


Book Description

This book includes selected contributions by lecturers at the third annual Formation d’Automatique de Paris. It provides a well-integrated synthesis of the latest thinking in nonlinear optimal control, observer design, stability analysis and structural properties of linear systems, without the need for an exhaustive literature review. The internationally known contributors to this volume represent many of the most reputable control centers in Europe.




Linear Discrete-Time Systems


Book Description

This book shows the completion of the theory of the linear discrete-time time-invariant dynamical systems.The reader will also gain knowledge of discovered fundamental dynamical characteristic of the systems, the full transfer function matrix F(z), definitions and determinations, for three classes of the systems, IO, ISO and IIO




Finite-Time Stability: An Input-Output Approach


Book Description

Systematically presents the input-output finite-time stability (IO-FTS) analysis of dynamical systems, covering issues of analysis, design and robustness The interest in finite-time control has continuously grown in the last fifteen years. This book systematically presents the input-output finite-time stability (IO-FTS) analysis of dynamical systems, with specific reference to linear time-varying systems and hybrid systems. It discusses analysis, design and robustness issues, and includes applications to real world engineering problems. While classical FTS has an important theoretical significance, IO-FTS is a more practical concept, which is more suitable for real engineering applications, the goal of the research on this topic in the coming years. Key features: Includes applications to real world engineering problems. Input-output finite-time stability (IO-FTS) is a practical concept, useful to study the behavior of a dynamical system within a finite interval of time. Computationally tractable conditions are provided that render the technique applicable to time-invariant as well as time varying and impulsive (i.e. switching) systems. The LMIs formulation allows mixing the IO-FTS approach with existing control techniques (e. g. H∞ control, optimal control, pole placement, etc.). This book is essential reading for university researchers as well as post-graduate engineers practicing in the field of robust process control in research centers and industries. Topics dealt with in the book could also be taught at the level of advanced control courses for graduate students in the department of electrical and computer engineering, mechanical engineering, aeronautics and astronautics, and applied mathematics.




Discrete-Time Linear Systems


Book Description

Discrete-Time Linear Systems: Theory and Design with Applications combines system theory and design in order to show the importance of system theory and its role in system design. The book focuses on system theory (including optimal state feedback and optimal state estimation) and system design (with applications to feedback control systems and wireless transceivers, plus system identification and channel estimation).