Timing Analysis and Optimization of Sequential Circuits


Book Description

Recent years have seen rapid strides in the level of sophistication of VLSI circuits. On the performance front, there is a vital need for techniques to design fast, low-power chips with minimum area for increasingly complex systems, while on the economic side there is the vastly increased pressure of time-to-market. These pressures have made the use of CAD tools mandatory in designing complex systems. Timing Analysis and Optimization of Sequential Circuits describes CAD algorithms for analyzing and optimizing the timing behavior of sequential circuits with special reference to performance parameters such as power and area. A unified approach to performance analysis and optimization of sequential circuits is presented. The state of the art in timing analysis and optimization techniques is described for circuits using edge-triggered or level-sensitive memory elements. Specific emphasis is placed on two methods that are true sequential timing optimizations techniques: retiming and clock skew optimization. Timing Analysis and Optimization of Sequential Circuits covers the following topics: Algorithms for sequential timing analysis Fast algorithms for clock skew optimization and their applications Efficient techniques for retiming large sequential circuits Coupling sequential and combinational optimizations. Timing Analysis and Optimization of Sequential Circuits is written for graduate students, researchers and professionals in the area of CAD for VLSI and VLSI circuit design.




Timing Optimization Through Clock Skew Scheduling


Book Description

History of the Book The last three decades have witnessed an explosive development in integrated circuit fabrication technologies. The complexities of cur rent CMOS circuits are reaching beyond the 100 nanometer feature size and multi-hundred million transistors per integrated circuit. To fully exploit this technological potential, circuit designers use sophisticated Computer-Aided Design (CAD) tools. While supporting the talents of innumerable microelectronics engineers, these CAD tools have become the enabling factor responsible for the successful design and implemen tation of thousands of high performance, large scale integrated circuits. This research monograph originated from a body of doctoral disserta tion research completed by the first author at the University of Rochester from 1994 to 1999 while under the supervision of Prof. Eby G. Friedman. This research focuses on issues in the design of the clock distribution net work in large scale, high performance digital synchronous circuits and particularly, on algorithms for non-zero clock skew scheduling. During the development of this research, it has become clear that incorporating timing issues into the successful integrated circuit design process is of fundamental importance, particularly in that advanced theoretical de velopments in this area have been slow to reach the designers' desktops.




Digital System Clocking


Book Description

Provides the only up-to-date source on the most recent advances in this often complex and fascinating topic. The only book to be entirely devoted to clocking Clocking has become one of the most important topics in the field of digital system design A "must have" book for advanced circuit engineers




Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation


Book Description

This volume features the refereed proceedings of the 17th International Workshop on Power and Timing Modeling, Optimization and Simulation. Papers cover high level design, low power design techniques, low power analog circuits, statistical static timing analysis, power modeling and optimization, low power routing optimization, security and asynchronous design, low power applications, modeling and optimization, and more.




Static Timing Analysis for Nanometer Designs


Book Description

iming, timing, timing! That is the main concern of a digital designer charged with designing a semiconductor chip. What is it, how is it T described, and how does one verify it? The design team of a large digital design may spend months architecting and iterating the design to achieve the required timing target. Besides functional verification, the t- ing closure is the major milestone which dictates when a chip can be - leased to the semiconductor foundry for fabrication. This book addresses the timing verification using static timing analysis for nanometer designs. The book has originated from many years of our working in the area of timing verification for complex nanometer designs. We have come across many design engineers trying to learn the background and various aspects of static timing analysis. Unfortunately, there is no book currently ava- able that can be used by a working engineer to get acquainted with the - tails of static timing analysis. The chip designers lack a central reference for information on timing, that covers the basics to the advanced timing veri- cation procedures and techniques.




The VLSI Handbook


Book Description

For the new millenium, Wai-Kai Chen introduced a monumental reference for the design, analysis, and prediction of VLSI circuits: The VLSI Handbook. Still a valuable tool for dealing with the most dynamic field in engineering, this second edition includes 13 sections comprising nearly 100 chapters focused on the key concepts, models, and equations. Written by a stellar international panel of expert contributors, this handbook is a reliable, comprehensive resource for real answers to practical problems. It emphasizes fundamental theory underlying professional applications and also reflects key areas of industrial and research focus. WHAT'S IN THE SECOND EDITION? Sections on... Low-power electronics and design VLSI signal processing Chapters on... CMOS fabrication Content-addressable memory Compound semiconductor RF circuits High-speed circuit design principles SiGe HBT technology Bipolar junction transistor amplifiers Performance modeling and analysis using SystemC Design languages, expanded from two chapters to twelve Testing of digital systems Structured for convenient navigation and loaded with practical solutions, The VLSI Handbook, Second Edition remains the first choice for answers to the problems and challenges faced daily in engineering practice.




Integrated Circuit Design. Power and Timing Modeling, Optimization and Simulation


Book Description

The International Workshop on Power and Timing Modeling, Optimization, and Simulation PATMOS 2002, was the 12th in a series of international workshops 1 previously held in several places in Europe. PATMOS has over the years evolved into a well-established and outstanding series of open European events on power and timing aspects of integrated circuit design. The increased interest, espe- ally in low-power design, has added further momentum to the interest in this workshop. Despite its growth, the workshop can still be considered as a very - cused conference, featuring high-level scienti?c presentations together with open discussions in a free and easy environment. This year, the workshop has been opened to both regular papers and poster presentations. The increasing number of worldwide high-quality submissions is a measure of the global interest of the international scienti?c community in the topics covered by PATMOS. The objective of this workshop is to provide a forum to discuss and inves- gate the emerging problems in the design methodologies and CAD-tools for the new generation of IC technologies. A major emphasis of the technical program is on speed and low-power aspects with particular regard to modeling, char- terization, design, and architectures. The technical program of PATMOS 2002 included nine sessions dedicated to most important and current topics on power and timing modeling, optimization, and simulation. The three invited talks try to give a global overview of the issues in low-power and/or high-performance circuit design.




Design for High Performance, Low Power, and Reliable 3D Integrated Circuits


Book Description

This book provides readers with a variety of algorithms and software tools, dedicated to the physical design of through-silicon-via (TSV) based, three-dimensional integrated circuits. It describes numerous “manufacturing-ready” GDSII-level layouts of TSV-based 3D ICs developed with the tools covered in the book. This book will also feature sign-off level analysis of timing, power, signal integrity, and thermal analysis for 3D IC designs. Full details of the related algorithms will be provided so that the readers will be able not only to grasp the core mechanics of the physical design tools, but also to be able to reproduce and improve upon the results themselves. This book will also offer various design-for-manufacturability (DFM), design-for-reliability (DFR), and design-for-testability (DFT) techniques that are considered critical to the physical design process.




Simulation and Optimization of Digital Circuits


Book Description

This book describes new, fuzzy logic-based mathematical apparatus, which enable readers to work with continuous variables, while implementing whole circuit simulations with speed, similar to gate-level simulators and accuracy, similar to circuit-level simulators. The author demonstrates newly developed principles of digital integrated circuit simulation and optimization that take into consideration various external and internal destabilizing factors, influencing the operation of digital ICs. The discussion includes factors including radiation, ambient temperature, electromagnetic fields, and climatic conditions, as well as non-ideality of interconnects and power rails.




Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation


Book Description

This book constitutes the refereed proceedings of the 16th International Workshop on Power and Timing Modeling, Optimization and Simulation, PATMOS 2006. The book presents 41 revised full papers and 23 revised poster papers together with 4 key notes and 3 industrial abstracts. Topical sections include high-level design, power estimation and modeling memory and register files, low-power digital circuits, busses and interconnects, low-power techniques, applications and SoC design, modeling, and more.