Tip Enhancement


Book Description

This book discusses the recent advances in the area of near-field Raman scattering, mainly focusing on tip-enhanced and surface-enhanced Raman scattering. Some of the key features covered here are the optical structuring and manipulations, single molecule sensitivity, analysis of single-walled carbon nanotubes, and analytic applications in chemistry, biology and material sciences. This book also discusses the plasmonic materials for better enhancement, and optical antennas. Further, near-field microscopy based on second harmonic generation is also discussed. Chapters have been written by some of the leading scientists in this field, who present some of their recent work in this field.·Near-field Raman scattering·Tip-enhanced Raman spectroscopy·Surface-enhanced Raman spectroscopy·Nano-photonics·Nanoanalysis of Physical, chemical and biological materials beyond the diffraction limits·Single molecule detection




Tip-Enhanced Raman Spectroscopy for Nanoelectronics


Book Description

This dissertation focuses on the application of Tip-Enhanced Raman spectroscopy (TERS) to non-transparent and non-conductive samples, allowing for the optical characterization of nanoelectronic devices. As such, nano-crystals are analyzed as a model system for the investigation of chemical and structural properties. Furthermore, a novel method for mapping the refractive index of materials with nanometer resolution is presented. The technological progress of electronics through miniaturization has reached the nanoscale while new materials with high performance and functional properties gain importance. Quality control and the scientific understanding of size effects in electronic nanostructures are required more than ever to consolidate existing technologies and to determine scaling limits of new materials. Conventional techniques, including scanning electron and scanning probe microscopy, provide topographic information but only very limited chemical information to analyze the physical properties of nanomaterials. Chemical and structural sensitivity is available by Raman or infrared spectroscopy, but with a spatial resolution limited to the microscale by the diffraction limit of light. TERS combines the virtues of scanning probe microscopy with those of optical spectroscopy to overcome the diffraction limit through the excitation of surface plasmons on a scanning probe tip to confine light to nanometers. In this work, a TERS system was installed to operate on opaque samples by employing optical side access. TERS probes were fabricated by electrochemical etching and operated in scanning tunneling microscopy and atomic force microscopy with quartz tuning forks to enable scanning on various surfaces. TERS was then applied to ferroelectric lead titanate nano-crystals on a platinized silicon substrate as a model system for nanostructured, charge-based memory devices at the onset of finite size effects.







Laser-Based Nano Fabrication and Nano Lithography


Book Description

This book is a printed edition of the Special Issue "Laser-Based Nano Fabrication and Nano Lithography" that was published in Nanomaterials




TIP 35: Enhancing Motivation for Change in Substance Use Disorder Treatment (Updated 2019)


Book Description

Motivation is key to substance use behavior change. Counselors can support clients' movement toward positive changes in their substance use by identifying and enhancing motivation that already exists. Motivational approaches are based on the principles of person-centered counseling. Counselors' use of empathy, not authority and power, is key to enhancing clients' motivation to change. Clients are experts in their own recovery from SUDs. Counselors should engage them in collaborative partnerships. Ambivalence about change is normal. Resistance to change is an expression of ambivalence about change, not a client trait or characteristic. Confrontational approaches increase client resistance and discord in the counseling relationship. Motivational approaches explore ambivalence in a nonjudgmental and compassionate way.




Modern Techniques of Spectroscopy


Book Description

The book highlights recent developments in the field of spectroscopy by providing the readers with an updated and high-level of overview. The focus of this book is on the introduction to concepts of modern spectroscopic techniques, recent technological innovations in this field, and current examples of applications to molecules and materials relevant for academia and industry. The book will be beneficial to researchers from various branches of science and technology, and is intended to point them to modern techniques, which might be useful for their specific problems. Spectroscopic techniques, that are discussed include, UV-Visible absorption spectroscopy, XPS, Raman spectroscopy, SERS, TERS, CARS, IR absorption spectroscopy, SFG, LIBS, Quantum cascade laser (QCL) spectroscopy, fluorescence spectroscopy, ellipsometry, cavity-enhanced absorption spectroscopy, such as cavity ring-down spectroscopy (CRDS) and evanescent wave-CRDS both in gas and condensed phases, time-resolved spectroscopy etc. Applications introduced in the different chapters demonstrates the usefulness of the spectroscopic techniques for the characterization of fundamental properties of molecules, e.g. in connection with environmental impact, bio-activity, or usefulness for pharmaceutical drugs, and materials important e.g. for nano-science, nuclear chemistry, or bio-applications. The book presents how spectroscopic techniques can help to better understand substances, which have also great impact on questions of social and economic relevance (environment, alternative energy, etc.).




Handbook of Nanoscale Optics and Electronics


Book Description

With the increasing demand for smaller, faster, and more highly integrated optical and electronic devices, as well as extremely sensitive detectors for biomedical and environmental applications, a field called nano-optics or nano-photonics/electronics is emerging – studying the many promising optical properties of nanostructures. Like nanotechnology itself, it is a rapidly evolving and changing field – but because of strong research activity in optical communication and related devices, combined with the intensive work on nanotechnology, nano-optics is shaping up fast to be a field with a promising future. This book serves as a one-stop review of modern nano-optical/photonic and nano-electronic techniques, applications, and developments. - Provides overview of the field of Nano-optics/photonics and electronics, detailing practical examples of photonic technology in a wide range of applications - Discusses photonic systems and devices with mathematical rigor precise enough for design purposes - A one-stop review of modern nano-optical/photonic and nano-electronic techniques, applications, and developments







Principles of Surface-Enhanced Raman Spectroscopy


Book Description

SERS was discovered in the 1970s and has since grown enormously in breadth, depth, and understanding. One of the major characteristics of SERS is its interdisciplinary nature: it lies at the boundary between physics, chemistry, colloid science, plasmonics, nanotechnology, and biology. By their very nature, it is impossible to find a textbook that will summarize the principles needed for SERS of these rather dissimilar and disconnected topics. Although a basic understanding of these topics is necessary for research projects in SERS with all its many aspects and applications, they are seldom touched upon as a coherent unit during most undergraduate studies in physics or chemistry. This book intends to fill this existing gap in the literature. It provides an overview of the underlying principles of SERS, from the fundamental understanding of the effect to its potential applications. It is aimed primarily at newcomers to the field, graduate students, researchers or scientists, attracted by the many applications of SERS and plasmonics or its basic science. The emphasis is on concepts and background material for SERS, such as Raman spectroscopy, the physics of plasmons, or colloid science, all of them introduced within the context of SERS, and from where the more specialized literature can be followed. - Represents one of very few books fully dedicated to the topic of surface-enhanced Raman spectroscopy (SERS) - Gives a comprehensive summary of the underlying physical concepts around SERS - Provides a detailed analysis of plasmons and plasmonics




Advances in Applied Mechanics


Book Description

Advances in Applied Mechanics draws together recent significant advances in various topics in applied mechanics. Published since 1948, Advances in Applied Mechanics aims to provide authoritative review articles on topics in the mechanical sciences, primarily of interest to scientists and engineers working in the various branches of mechanics, but also of interest to the many who use the results of investigations in mechanics in various application areas, such as aerospace, chemical, civil, environmental, mechanical and nuclear engineering. - Covers all fields of the mechanical sciences - Highlights classical and modern areas of mechanics that are ready for review - Provides comprehensive coverage of the field in question