Tissue Engineering of the Peripheral Nerve: Biomaterials and Physical Therapy


Book Description

This issue of International Review of Neurobiology brings together cutting-edge research on tissue engineering of the peripheral nerve. It reviews current knowledge and understanding, provides a starting point for researchers and practitioners entering the field, and builds a platform for further research and discovery. This volume covers the cutting-edge research on tissue engineering of the peripheral nerve




Central Nervous System Tissue Engineering


Book Description

Combating neural degeneration from injury or disease is extremely difficult in the brain and spinal cord, i.e. central nervous system (CNS). Unlike the peripheral nerves, CNS neurons are bombarded by physical and chemical restrictions that prevent proper healing and restoration of function. The CNS is vital to bodily function, and loss of any part of it can severely and permanently alter a person's quality of life. Tissue engineering could offer much needed solutions to regenerate or replace damaged CNS tissue. This review will discuss current CNS tissue engineering approaches integrating scaffolds, cells and stimulation techniques. Hydrogels are commonly used CNS tissue engineering scaffolds to stimulate and enhance regeneration, but fiber meshes and other porous structures show specific utility depending on application. CNS relevant cell sources have focused on implantation of exogenous cells or stimulation of endogenous populations. Somatic cells of the CNS are rarely utilized for tissue engineering; however, glial cells of the peripheral nervous system (PNS) may be used to myelinate and protect spinal cord damage. Pluripotent and multipotent stem cells offer alternative cell sources due to continuing advancements in identification and differentiation of these cells. Finally, physical, chemical, and electrical guidance cues are extremely important to neural cells, serving important roles in development and adulthood. These guidance cues are being integrated into tissue engineering approaches. Of particular interest is the inclusion of cues to guide stem cells to differentiate into CNS cell types, as well to guide neuron targeting. This review should provide the reader with a broad understanding of CNS tissue engineering challenges and tactics, with the goal of fostering the future development of biologically inspired designs. Table of Contents: Introduction / Anatomy of the CNS and Progression of Neurological Damage / Biomaterials for Scaffold Preparation / Cell Sources for CNS TE / Stimulation and Guidance / Concluding Remarks




Peripheral Nerve Tissue Engineering and Regeneration


Book Description

This updatable book provides an accessible informative overview of the current state of the art in nerve repair research.The introduction includes history of nerve repair research and establishes key concepts and terminology and will be followed by sections that represent the main areas of interest in the field: (1) Biomaterials, (2) Therapeutic Cells, (3) Drug, Gene and Extracellular Vesicle Therapies, (4) Research Models and (5) Clinical Translation. Each section will contain 3 - 6 chapters, capturing the full breadth of relevant technology. Bringing together diverse disciplines under one overarching theme echoes the multidisciplinary approach that underpins modern tissue engineering and regenerative medicine. Each chapter will be written in an accessible manner that will facilitate interest and understanding, providing a comprehensive single reference source. The updatable nature of the work will ensure that it can evolve to accommodate future changes and new technologies. The main readership for this work will be researchers and clinicians based in academic, industrial and healthcare settings all over the world.




Tissue Engineering of the Peripheral Nerve


Book Description

This issue of International Review of Neurobiology brings together cutting-edge research on tissue engineering of the peripheral nerve. It reviews current knowledge and understanding, provides a starting point for researchers and practitioners entering the field, and builds a platform for further research and discovery. This volume of International Review of Neurobiology brings together cutting-edge research on tissue engineering of the peripheral nerve It reviews current knowledge and understanding, provides a starting point for researchers and practitioners entering the field, and builds a platform for further research and discovery




Central Nervous System Tissue Engineering


Book Description

Combating neural degeneration from injury or disease is extremely difficult in the brain and spinal cord, i.e. central nervous system (CNS). Unlike the peripheral nerves, CNS neurons are bombarded by physical and chemical restrictions that prevent proper healing and restoration of function. The CNS is vital to bodily function, and loss of any part of it can severely and permanently alter a person's quality of life. Tissue engineering could offer much needed solutions to regenerate or replace damaged CNS tissue. This review will discuss current CNS tissue engineering approaches integrating scaffolds, cells and stimulation techniques. Hydrogels are commonly used CNS tissue engineering scaffolds to stimulate and enhance regeneration, but fiber meshes and other porous structures show specific utility depending on application. CNS relevant cell sources have focused on implantation of exogenous cells or stimulation of endogenous populations. Somatic cells of the CNS are rarely utilized for tissue engineering; however, glial cells of the peripheral nervous system (PNS) may be used to myelinate and protect spinal cord damage. Pluripotent and multipotent stem cells offer alternative cell sources due to continuing advancements in identification and differentiation of these cells. Finally, physical, chemical, and electrical guidance cues are extremely important to neural cells, serving important roles in development and adulthood. These guidance cues are being integrated into tissue engineering approaches. Of particular interest is the inclusion of cues to guide stem cells to differentiate into CNS cell types, as well to guide neuron targeting. This review should provide the reader with a broad understanding of CNS tissue engineering challenges and tactics, with the goal of fostering the future development of biologically inspired designs. Table of Contents: Introduction / Anatomy of the CNS and Progression of Neurological Damage / Biomaterials for Scaffold Preparation / Cell Sources for CNS TE / Stimulation and Guidance / Concluding Remarks




Biomaterials for Neural Tissue Engineering


Book Description

Biomaterials for Neural Tissue Engineering covers a range of materials and technologies used for regenerating or repairing neural tissue. With a strong focus on biomaterials and scaffolds, the book examines the testing and evaluation pathway for in-vitro and in-vivo testing trials. This book introduces the reader to the fundamentals of the nervous system from a tissue engineering perspective and goes on to describe contemporary technologies used in the development of neural repair materials, as well as currently available biomaterials suitable for neural tissue repair and regeneration. This detailed reference is ideal for those who are new to using biomaterials in tissue engineering, particularly those interested in the nervous system, including academics and early career researchers in the fields of materials science, regenerative medicine, biomedical engineering and clinical sciences. Provides readers entering the field with a core introduction to neural tissue engineering processes and real-world applications Comprehensively examines a variety of biomaterial approaches Discusses the most current in-vitro and in-vivo testing and their importance in treating nervous system disorders Details a broad range of natural and synthetic biomaterials used to engineer neural tissue




Engineering Neural Tissue from Stem Cells


Book Description

Engineering Neural Tissue from Stem Cells covers the basic knowledge needed to understand the nervous system and how existing cells can be used to create neural tissue. This book presents a broad range of topics related to the design requirements for engineering neural tissue from stem cells. It begins with the anatomy and function of the central and peripheral nervous system, also covering stem cells, their relation to the nervous system and their function in recovery after injury or disease. In addition, the book explores the role of the extracellular matrix and vasculature/immune system and biomaterials, including their suitability for neural tissue engineering applications. Provides readers entering the field with a strong basis of neural tissue engineering processes and real-world applications Discusses the most current clinical trials and their importance of treating nervous system disorders Reviews the structure and immune response of the nervous system, including the brain, spinal cord and their present cells Offers a necessary overview of the natural and synthetic biomaterials used to engineer neural tissue




Bioinspired Biomaterials


Book Description

This book is the first of two volumes that together offer a comprehensive account of cutting-edge advances in the development of biomaterials for use within tissue engineering and regenerative medicine. Topics addressed in this volume, which is devoted to bioinspired biomaterials, range from novel biomaterials for regenerative medicine through to emerging enabling technologies with applications in, for example, drug delivery, maternal–fetal medicine, peripheral nerve repair and regeneration, and brain tumor therapy. New bioinspired hydrogels receive detailed attention in the book, and a further focus is the use of bioinspired biomaterials in the regulation of stem cell fate. Here the coverage includes the role of scaffolds in cartilage regeneration, the bioapplication of inorganic nanomaterials in tissue engineering, and guidance of cell migration to improve tissue regeneration. The authors are recognized experts in the interdisciplinary field of regenerative medicine and the book will be of value for all with an interest in regenerative medicine based on biomaterials.




Peripheral Nerve Regeneration


Book Description




Biologically Responsive Biomaterials for Tissue Engineering


Book Description

Developments in the area of biomaterials, bionanotechnology, tissue engineering, and medical devices are becoming the core of health care. Almost all medical specialties involve the use of biomaterials, and research plays a key role in the development of new and improved treatment modalities. This volume focuses on several current trends in tissue engineering, remodelling and regeneration. Leading researchers describe the use of nanomaterials to create new functionalities when interfaced with biological molecules or structures. In addition to coverage of basic science and engineering aspects, a range of applications in bionanotechnology are presented, including diagnostic devices, contrast agents, analytical tools, physical therapy applications, and vehicles for targeted drug delivery. The use of polymers, alloys, and composites, or a combination of these, for biomaterials applications in orthopaedics is also explored. These contributions represent essential reading for the biomaterials and biomedical engineering communities, and can serve as instructional course lectures targeted at graduate and post-graduate students.