Titanate and Titania Nanotubes


Book Description

This exciting new book is a unique compilation of data from a wide range of chemical and spectroscopic instrumentation and the integration of nanostructure characterisation drawn from physical, chemical, electrochemical, spectroscopic and electron microscopic measurements. It fills a gap in the current nanomaterials literature by documenting the latest research from scientific journals and patent literature to provide a concise yet balanced and integrated treatment of an interesting topic: titanium oxide nanostructures within the emerging fashionable area of nanomaterials. Of particular interest are the following key chapters: * Modification and Coating Techniques - provides a unique summary and discussion of available techniques to coat surfaces with nanostructured materials * Chemical Properties - relates structure to surface chemistry and hence applications * Structural and Physical Properties - reviews the relationship between nanostructure and physical properties providing a basis for the rationalisation of applications The book, a valuable reference point, is aimed at professionals, postgraduates and industrial research workers in nanomaterials. Readers will gain a knowledge of the methods for synthesising nanomaterials as well as an understanding of their structure and resulting physical characteristics and a knowledge of their (existing and potential) applications.




Titanate and Titania Nanotubes


Book Description

The second edition of Titanate and Titania Nanotubes consolidates all known knowledge regarding the synthesis, properties and application of nanostructured titanates.







Titanium Dioxide


Book Description

Titanium dioxide is currently being used in many industrial products. It provides unique photocatalytic properties for water splitting and purification, bacterial inactivation, and organics degradation. It has also been widely used as the photoanode for dye-sensitized solar cells and coatings for self-cleaning surfaces, biomedical implants, and nanomedicine. This book covers various aspects of titanium dioxide nanomaterials including their unique one-dimensional, two-dimensional, mesoporous, and hierarchical nanostructures and their synthetic methods such as sol-gel, hydrothermal, anodic oxidation, and electrophoretic deposition, as well as its key applications in environmental and energy sectors. Through these 24 chapters written by experts from the international scientific community, readers will have access to a comprehensive overview of the recent research and development findings on the titanium dioxide nanomaterials.




Synthesis of Titanate Nanotubes and Their Applications as Pd Catalyst Support


Book Description

In this research, titanate nanotubes and nanowires were synthesized by hydrothermal method from a spherical shape commercial TiO2. The effects of quenching, reaction temperature, and annealing on the formation and morphology of the titanate were investigated. Titanate nanotubes with high BET surface area were synthesized at 150oC. The titanate nanotubes were transformed to titanate nanowires when the reaction temperature was increased to 200oC. After annealing at 600 oC, the titanate nanotubes transformed back into anatase TiO2 whereas annealing of the titanate nanowires resulted in metastable form TiO2 under similar conditions. The use of titanate nanotubes as Pd catalyst support resulted in higher catalytic performance in the liquid phase selective hydrogenation of 1-heptyne than the Pd catalysts supported on titanate nanowire and commercial titania. The titanate nanotubes supported Pd nanoparticles synthesized from reduction by solvent method exhibited higher conversion of 1-heptyne than those prepared by impregnation method. While the hydrogenation rate increased with increasing Pd dispersion, the selectivity to 1-heptene depended largely on the nature of TiO2 support and/or the interaction of Pd and titania support.




Industrial Chemistry of Oxides for Emerging Applications


Book Description

Valuable insights into the extraction, production, and properties of a large number of natural and synthetic oxides utilized in applications worldwide from ceramics, electronic components, and coatings This handbook describes each of the major oxides chronologically—starting from the processes of extraction of ores containing oxides, their purification and transformations into pure alloyed powders, and their appropriate characterization up to the processes of formation of 2D films by such methods as PVD, CVD, and coatings by thermal spraying or complicated 3D objects by sintering and rapid prototyping. The selection of oxides has been guided by the current context of industrial applications. An important point that is considered in the book concerns the strategic aspects of oxides. Some oxides (e.g. rare earth ones) become more expensive due to the growing demand for them, others, because of the strategic importance of countries producing raw materials and the countries that are using them. Industrial Chemistry of Oxides for Emerging Applications provides readers with everything they need to know in 7 chapters that cover: technical and economical importance of oxides in present and future; fundamentals of oxides manufacturing; extraction, properties, and applications of Al2O3; extraction, properties, and applications of ZrO2; synthesis, properties, and applications of YBaCu2O7x; extraction, properties, and applications of TiO2; and synthesis, properties, and application of hydroxyapatite. Presents the extraction, production, and properties of a large fraction of oxides applications worldwide, both natural as well as synthetic multi‐oxides Covers a very important segment of many industrial processes, such as refractories and piezoelectric oxides—both applications constituting very large market segments Developed from a lecture course given by the authors for over a decade Industrial Chemistry of Oxides for Emerging Applications is an excellent text for university professors and teachers, and graduate and postgraduate students with a solid background in physics and chemistry.




TiO2 Nanoparticles


Book Description

A unique book that summarizes the properties, toxicology, and biomedical applications of TiO2-based nanoparticles Nanotechnology is becoming increasingly important for products used in our daily lives. Nanometer-sized titanium dioxide (TiO2) are widely used in industry for different purposes, such as painting, sunscreen, printing, cosmetics, biomedicine, and so on. This book summarizes the advances of TiO2 based nanobiotechnology and nanomedicine, covering materials properties, toxicological research, and biomedical application, such as antibacter, biosensing, and cancer theranostics. It uniquely integrates the TiO2 applications from physical properties, toxicology to various biomedical applications, and includes black TiO2 based cancer theranostics. Beginning with a comprehensive introduction to the properties and applications of nanoparticles, TiO2 Nanoparticles: Applications in Nanobiotechnology, Theranostics and Nanomedicine offers chapters on: Toxicity of TiO2 Nanoparticles; Antibacterial Applications of TiO2 Nanoparticles; Surface Enhanced Raman Spectrum of TiO2 Nanoparticle for Biosensing (TiO2 Nanoparticle Served as SERS Sensing Substrate); TiO2 as Inorganic Photosensitizer for Photodynamic Therapy; Cancer Theranostics of Black TiO2 Nanoparticles; and Neurodegenerative Disease Diagnostics and Therapy of TiO2-Based Nanoparticles. This title: -Blends the physical properties, toxicology of TiO2 nanoparticles to the many biomedical applications -Includes black TiO2 based cancer theranostics in its coverage -Appeals to a broad audience of researchers in academia and industry working on nanomaterials-based biosensing, drug delivery, nanomedicine TiO2 Nanoparticles: Applications in Nanobiotechnology, Theranostics and Nanomedicine is an ideal book for medicinal chemists, analytical chemists, biochemists, materials scientists, toxicologists, and those in the pharmaceutical industry.




Smart Nanoparticles Technology


Book Description

In the last few years, Nanoparticles and their applications dramatically diverted science in the direction of brand new philosophy. The properties of many conventional materials changed when formed from nanoparticles. Nanoparticles have a greater surface area per weight than larger particles which causes them to be more reactive and effective than other molecules. In this book, we (InTech publisher, editor and authors) have invested a lot of effort to include 25 most advanced technology chapters. The book is organised into three well-heeled parts. We would like to invite all Nanotechnology scientists to read and share the knowledge and contents of this book.




TiO2 Nanotube Arrays


Book Description

TiO2 Nanotube Arrays: Synthesis, Properties, and Applications is the first book to provide an overview of this rapidly growing field. Vertically oriented, highly ordered TiO2 nanotube arrays are unique and easily fabricated materials with an architecture that demonstrates remarkable charge transfer as well as photocatalytic properties. This volume includes an introduction to TiO2 nanotube arrays, as well as a description of the material properties and distillation of the current research. Applications considered include gas sensing, heterojunction solar cells, water photoelectrolysis, photocatalytic CO2 reduction, as well as several biomedical applications. Written by leading researchers in the field, TiO2 Nanotube Arrays: Synthesis, Properties, and Applications is a valuable reference for chemists, materials scientists and engineers involved with renewable energy sources, biomedical engineering, and catalysis, to cite but a few examples.




Nanomaterials and Nanotechnology


Book Description

This book provides a complete overview of a wide range of nanomaterials from their synthesis and characterization to current and potential applications with special focus on the use of such nano-based products as functional agents in biomedical, environmental and industrial applications. It addresses the intrinsic relationship between aspects involving the synthesis of nanocompounds, their bio-physico-chemical properties and their interactions occurring in biomedical, environmental and industrial matrix. This book is of interest to engineers, academics and research scholars working in these fields.