Toeplitz Operators and Index Theory in Several Complex Variables


Book Description

4. 1 Bergman-Toeplitz Operators Over Bounded Domains 242 4. 2 Hardy-Toeplitz Operators Over Strictly Domains Pseudoconvex 250 Groupoid C* -Algebras 4. 3 256 4. 4 Hardy-Toeplitz Operators Over Tubular Domains 267 4. 5 Bergman-Toeplitz Operators Over Tubular Domains 278 4. 6 Hardy-Toeplitz Operators Over Polycircular Domains 284 4. 7 Bergman-Toeplitz Operators Over Polycircular Domains 290 4. 8 Hopf C* -Algebras 299 4. 9 Actions and Coactions on C* -Algebras 310 4. 10 Hardy-Toeplitz Operators Over K-circular Domains 316 4. 11 Hardy-Toeplitz Operators Over Symmetric Domains 325 4. 12 Bergman-Toeplitz Operators Over Symmetric Domains 361 5. Index Theory for Multivariable Toeplitz Operators 5. 0 Introduction 371 5. 1 K-Theory for Topological Spaces 372 5. 2 Index Theory for Strictly Pseudoconvex Domains 384 5. 3 C*-Algebras K-Theory for 394 5. 4 Index Theory for Symmetric Domains 400 5. 5 Index Theory for Tubular Domains 432 5. 6 Index Theory for Polycircular Domains 455 References 462 Index of Symbols and Notations 471 In trod uction Toeplitz operators on the classical Hardy space (on the I-torus) and the closely related Wiener-Hopf operators (on the half-line) form a central part of operator theory, with many applications e. g. , to function theory on the unit disk and to the theory of integral equations.




M.G. Krein’s Lectures on Entire Operators


Book Description

This book is devoted to the theory of entire Hermitian operators, an important branch of functional analysis harmoniously combining the methods of operator theory and the theory of analytic functions. This theory anables various problems of classical and modern analysis to be looked at from a uniform point of view. In addition, it serves as a source for setting and solving many new problems in both theories. The three chapters of the book are based on the notes written by his students of M. G. Krein's lectures on the theory of entire operators with (1,1) deficiency index which he delivered in 1961 at the Pedagogical Institute of Odessa, and on his works on the extension theory of Hermitian operators and the theory of analytic functions. The theory is further developed in the direction of solving the problems set up by Krein at ICM-66 in the first two appendices. The first concerns the case of Hermitian operators with arbitrary defect numbers, entire with respect to an ordinary gauge and to a generalized one as well. The other focuses on the entire operators representable by differential operators. The third appendix is the translation from Russian of the unpublished notes of Krein's lecture in which, in particular, the place of the theory of entire operators in the whole analysis is elucidated. In Krein's mathematical heritage the theory of entire operators occupies a special position.




Lie Theory And Its Applications In Physics Ii - Proceedings Of The Ii International Workshop


Book Description

This book consists of about 20 lectures on theoretical and observational aspects of astrophysical black holes, by experts in the field. The basic principles and astrophysical applications of the black hole magnetosphere and the Blandford-Znajek process are reviewed in detail, as well as accretion by black holes, black hole X-Ray binaries, black holes with cosmic strings, and so on. Recent advances in X-Ray observations of galactic black holes and new understanding of supermassive black holes in AGNs and normal galaxies are also discussed.




The Asymptotic Behaviour of Semigroups of Linear Operators


Book Description

This book presents a systematic account of the theory of asymptotic behaviour of semigroups of linear operators acting in a Banach space. The focus is on the relationship between asymptotic behaviour of the semigroup and spectral properties of its infinitesimal generator. The most recent developments in the field are included, such as the Arendt-Batty-Lyubich-Vu theorem, the spectral mapp- ing theorem of Latushkin and Montgomery-Smith, Weis's theorem on stability of positive semigroup in Lp-spaces, the stability theorem for semigroups whose resolvent is bounded in a half-plane, and a systematic theory of individual stability. Addressed to researchers and graduate students with interest in the fields of operator semigroups and evolution equations, this book is self-contained and provides complete proofs.




Chebyshev Splines and Kolmogorov Inequalities


Book Description

This monograph describes advances in the theory of extremal problems in classes of functions defined by a majorizing modulus of continuity w. In particular, an extensive account is given of structural, limiting, and extremal properties of perfect w-splines generalizing standard polynomial perfect splines in the theory of Sobolev classes. In this context special attention is paid to the qualitative description of Chebyshev w-splines and w-polynomials associated with the Kolmogorov problem of n-widths and sharp additive inequalities between the norms of intermediate derivatives in functional classes with a bounding modulus of continuity. Since, as a rule, the techniques of the theory of Sobolev classes are inapplicable in such classes, novel geometrical methods are developed based on entirely new ideas. The book can be used profitably by pure or applied scientists looking for mathematical approaches to the solution of practical problems for which standard methods do not work. The scope of problems treated in the monograph, ranging from the maximization of integral functionals, characterization of the structure of equimeasurable functions, construction of Chebyshev splines through applications of fixed point theorems to the solution of integral equations related to the classical Euler equation, appeals to mathematicians specializing in approximation theory, functional and convex analysis, optimization, topology, and integral equations .




Quantum Mechanics via Lie Algebras


Book Description

This monograph introduces mathematicians, physicists, and engineers to the ideas relating quantum mechanics and symmetries - both described in terms of Lie algebras and Lie groups. The exposition of quantum mechanics from this point of view reveals that classical mechanics and quantum mechanics are very much alike. Written by a mathematician and a physicist, this book is (like a math book) about precise concepts and exact results in classical mechanics and quantum mechanics, but motivated and discussed (like a physics book) in terms of their physical meaning. The reader can focus on the simplicity and beauty of theoretical physics, without getting lost in a jungle of techniques for estimating or calculating quantities of interest.




Analytic K-Homology


Book Description

Analytic K-homology draws together ideas from algebraic topology, functional analysis and geometry. It is a tool - a means of conveying information among these three subjects - and it has been used with specacular success to discover remarkable theorems across a wide span of mathematics. The purpose of this book is to acquaint the reader with the essential ideas of analytic K-homology and develop some of its applications. It includes a detailed introduction to the necessary functional analysis, followed by an exploration of the connections between K-homology and operator theory, coarse geometry, index theory, and assembly maps, including a detailed treatment of the Atiyah-Singer Index Theorem. Beginning with the rudiments of C* - algebra theory, the book will lead the reader to some central notions of contemporary research in geometric functional analysis. Much of the material included here has never previously appeared in book form.




Integral Equations with Difference Kernels on Finite Intervals


Book Description

Optimal synthesis, light scattering, and diffraction on a ribbon are just some of the applied problems for which integral equations with difference kernels are employed. The same equations are also met in important mathematical problems such as inverse spectral problems, nonlinear integral equations, and factorization of operators. On the basis of the operator identity method, the theory of integral operators with difference kernels is developed here, and the connection with many applied and theoretical problems is studied. A number of important examples are analyzed.




Schur Parameters, Factorization and Dilation Problems


Book Description

This book is devoted to the ubiquity of the Schur parameters. A dilation theoretic view leads to a unified perspective on several topics where Schur parameters appear as basic cells. Together with the transmission line, their physical counter- part, they appear in scattering theory, in modeling, prediction and filtering of nonstationary processes, in signal processing, geophysics and system theory. Modeling problems are considered for certain classes of operators, interpolation problems, determinental formulae, as well as connections with certain classes of graphs where, again, the Schur parameters could play a role. Some general algorithms that explore the transmission line are also presented in this book. As a whole, the text is self-contained and it is addressed to people interested in the previously mentioned topics or connections between them.




Complete Second Order Linear Differential Equations in Hilbert Spaces


Book Description

Incomplete second order linear differential equations in Banach spaces as well as first order equations have become a classical part of functional analysis. This monograph is an attempt to present a unified systematic theory of second order equations y" (t) + Ay' (t) + By (t) = 0 including well-posedness of the Cauchy problem as well as the Dirichlet and Neumann problems. Exhaustive yet clear answers to all posed questions are given. Special emphasis is placed on new surprising effects arising for complete second order equations which do not take place for first order and incomplete second order equations. For this purpose, some new results in the spectral theory of pairs of operators and the boundary behavior of integral transforms have been developed. The book serves as a self-contained introductory course and a reference book on this subject for undergraduate and post- graduate students and research mathematicians in analysis. Moreover, users will welcome having a comprehensive study of the equations at hand, and it gives insight into the theory of complete second order linear differential equations in a general context - a theory which is far from being fully understood.