Toeplitz Operators and Random Matrices


Book Description

This volume is dedicated to the memory of Harold Widom (1932–2021), an outstanding mathematician who has enriched mathematics with his ideas and ground breaking work since the 1950s until the present time. It contains a biography of Harold Widom, personal notes written by his former students or colleagues, and also his last, previously unpublished paper on domain walls in a Heisenberg–Ising chain. Widom's most famous contributions were made to Toeplitz operators and random matrices. While his work on random matrices is part of almost all the present-day research activities in this field, his work in Toeplitz operators and matrices was done mainly before 2000 and is therefore described in a contribution devoted to his achievements in just this area. The volume contains 18 invited and refereed research and expository papers on Toeplitz operators and random matrices. These present new results or new perspectives on topics related to Widom's work.




Combinatorics and Random Matrix Theory


Book Description

Over the last fifteen years a variety of problems in combinatorics have been solved in terms of random matrix theory. More precisely, the situation is as follows: the problems at hand are probabilistic in nature and, in an appropriate scaling limit, it turns out that certain key quantities associated with these problems behave statistically like the eigenvalues of a (large) random matrix. Said differently, random matrix theory provides a “stochastic special function theory” for a broad and growing class of problems in combinatorics. The goal of this book is to analyze in detail two key examples of this phenomenon, viz., Ulam's problem for increasing subsequences of random permutations and domino tilings of the Aztec diamond. Other examples are also described along the way, but in less detail. Techniques from many different areas in mathematics are needed to analyze these problems. These areas include combinatorics, probability theory, functional analysis, complex analysis, and the theory of integrable systems. The book is self-contained, and along the way we develop enough of the theory we need from each area that a general reader with, say, two or three years experience in graduate school can learn the subject directly from the text.




An Introduction to Random Matrices


Book Description

A rigorous introduction to the basic theory of random matrices designed for graduate students with a background in probability theory.




Toeplitz Operators and Related Topics


Book Description

This volume is dedicated to Harold Widom, a distinguished mathematician and renowned expert in the area of Toeplitz, Wiener-Hopf and pseudodifferential operators, on the occasion of his sixtieth birthday. The book opens with biographical material and a list of the mathematician's publications, this being followed by two papers based on Toeplitz lectures which he delivered at Tel Aviv University in March, 1993. The rest of the book consists of a selection of papers containing some recent achievements in the following areas: Szegö-Widom asymptotic formulas for determinants of finite sections of Toeplitz matrices and their generalizations, the Fisher-Hartwig conjecture, random matrices, analysis of kernels of Toeplitz matrices, projectional methods and eigenvalue distribution for Toeplitz matrices, the Fredholm theory for convolution type operators, the Nehari interpolation problem with generalizations and applications, and Toeplitz-Hausdorff type theorems. The book will appeal to a wide audience of pure and applied mathematicians.




Large Truncated Toeplitz Matrices, Toeplitz Operators, and Related Topics


Book Description

This book presents a collection of expository and research papers on various topics in matrix and operator theory, contributed by several experts on the occasion of Albrecht Böttcher’s 60th birthday. Albrecht Böttcher himself has made substantial contributions to the subject in the past. The book also includes a biographical essay, a complete bibliography of Albrecht Böttcher’s work and brief informal notes on personal encounters with him. The book is of interest to graduate and advanced undergraduate students majoring in mathematics, researchers in matrix and operator theory as well as engineers and applied mathematicians.







Spectra and Pseudospectra


Book Description

Pure and applied mathematicians, physicists, scientists, and engineers use matrices and operators and their eigenvalues in quantum mechanics, fluid mechanics, structural analysis, acoustics, ecology, numerical analysis, and many other areas. However, in some applications the usual analysis based on eigenvalues fails. For example, eigenvalues are often ineffective for analyzing dynamical systems such as fluid flow, Markov chains, ecological models, and matrix iterations. That's where this book comes in. This is the authoritative work on nonnormal matrices and operators, written by the authorities who made them famous. Each of the sixty sections is written as a self-contained essay. Each document is a lavishly illustrated introductory survey of its topic, complete with beautiful numerical experiments and all the right references. The breadth of included topics and the numerous applications that provide links between fields will make this an essential reference in mathematics and related sciences.




Patterned Random Matrices


Book Description

Large dimensional random matrices (LDRM) with specific patterns arise in econometrics, computer science, mathematics, physics, and statistics. This book provides an easy initiation to LDRM. Through a unified approach, we investigate the existence and properties of the limiting spectral distribution (LSD) of different patterned random matrices as the dimension grows. The main ingredients are the method of moments and normal approximation with rudimentary combinatorics for support. Some elementary results from matrix theory are also used. By stretching the moment arguments, we also have a brush with the intriguing but difficult concepts of joint convergence of sequences of random matrices and its ramifications. This book covers the Wigner matrix, the sample covariance matrix, the Toeplitz matrix, the Hankel matrix, the sample autocovariance matrix and the k-Circulant matrices. Quick and simple proofs of their LSDs are provided and it is shown how the semi-circle law and the March enko-Pastur law arise as the LSDs of the first two matrices. Extending the basic approach, we also establish interesting limits for some triangular matrices, band matrices, balanced matrices, and the sample autocovariance matrix. We also study the joint convergence of several patterned matrices, and show that independent Wigner matrices converge jointly and are asymptotically free of other patterned matrices. Arup Bose is a Professor at the Indian Statistical Institute, Kolkata, India. He is a distinguished researcher in Mathematical Statistics and has been working in high-dimensional random matrices for the last fifteen years. He has been the Editor of Sankyhā for several years and has been on the editorial board of several other journals. He is a Fellow of the Institute of Mathematical Statistics, USA and all three national science academies of India, as well as the recipient of the S.S. Bhatnagar Award and the C.R. Rao Award. His forthcoming books are the monograph, Large Covariance and Autocovariance Matrices (with Monika Bhattacharjee), to be published by Chapman & Hall/CRC Press, and a graduate text, U-statistics, M-estimates and Resampling (with Snigdhansu Chatterjee), to be published by Hindustan Book Agency.




Random Circulant Matrices


Book Description

Circulant matrices have been around for a long time and have been extensively used in many scientific areas. This book studies the properties of the eigenvalues for various types of circulant matrices, such as the usual circulant, the reverse circulant, and the k-circulant when the dimension of the matrices grow and the entries are random. In particular, the behavior of the spectral distribution, of the spectral radius and of the appropriate point processes are developed systematically using the method of moments and the various powerful normal approximation results. This behavior varies according as the entries are independent, are from a linear process, and are light- or heavy-tailed. Arup Bose obtained his B.Stat., M.Stat. and Ph.D. degrees from the Indian Statistical Institute. He has been on its faculty at the Theoretical Statistics and Mathematics Unit, Kolkata, India since 1991. He is a Fellow of the Institute of Mathematical Statistics, and of all three national science academies of India. He is a recipient of the S.S. Bhatnagar Prize and the C.R. Rao Award. He is the author of three books: Patterned Random Matrices, Large Covariance and Autocovariance Matrices (with Monika Bhattacharjee) and U-Statistics, M_m-Estimators and Resampling (with Snigdhansu Chatterjee). Koushik Saha obtained a B.Sc. in Mathematics from Ramakrishna Mission Vidyamandiara, Belur and an M.Sc. in Mathematics from Indian Institute of Technology Bombay. He obtained his Ph.D. degree from the Indian Statistical Institute under the supervision of Arup Bose. His thesis on circulant matrices received high praise from the reviewers. He has been on the faculty of the Department of Mathematics, Indian Institute of Technology Bombay since 2014.




Random Matrices


Book Description

Random matrix theory has many roots and many branches in mathematics, statistics, physics, computer science, data science, numerical analysis, biology, ecology, engineering, and operations research. This book provides a snippet of this vast domain of study, with a particular focus on the notations of universality and integrability. Universality shows that many systems behave the same way in their large scale limit, while integrability provides a route to describe the nature of those universal limits. Many of the ten contributed chapters address these themes, while others touch on applications of tools and results from random matrix theory. This book is appropriate for graduate students and researchers interested in learning techniques and results in random matrix theory from different perspectives and viewpoints. It also captures a moment in the evolution of the theory, when the previous decade brought major break-throughs, prompting exciting new directions of research.