Computer Methods for Tolerance Design


Book Description

This book describes recent research advances and computer tools that can be applied in the determination of geometric tolerances. A framework for tolerance synthesis is developed and used with artificial intelligence techniques to provide computer methods for both analysis and synthesis of geometric tolerance specifications. Tolerance primitives, based on a sound theory of tolerancing, are used to represent tolerance relationships or links between geometric entities and functional requirements. Algorithms are developed for the determination of boundedness and the measurement of sufficiency. A detailed constraint network is used to represent tolerance relations for a part under design and provide for the composition of tolerance specifications.




Tolerance Design Of Electronic Circuits


Book Description

Tolerance design techniques are playing an increasingly important role in maximizing the manufacturing yield of mass-produced electronic circuits. Tolerance Design of Electronic Circuits presents an account of design and analysis methods used to minimize the unwanted effects of component tolerances.Highlights of the book include• An overview of the concepts of Tolerance Analysis and Design• A detailed discussion of the Statistical Exploration Approach to tolerance design• An engineering discussion of the Monte Carlo statistical method• A presentation of several successful examples of the application of tolerance designThis book will be highly appropriate for professional Electronic Circuit Designers, Computer Aided Design Specialists, Electronic Engineering undergraduates and graduates taking courses in Advanced Electronic Circuit Design.




Tolerance Design of Electronic Circuits


Book Description

Tolerance design techniques are playing an increasingly important role in maximizing the manufacturing yield of mass-produced electronic circuits. Tolerance Design of Electronic Circuits presents an account of design and analysis methods used to minimize the unwanted effects of component tolerances.Highlights of the book include? An overview of the concepts of Tolerance Analysis and Design? A detailed discussion of the Statistical Exploration Approach to tolerance design? An engineering discussion of the Monte Carlo statistical method? A presentation of several successful examples of the application of tolerance designThis book will be highly appropriate for professional Electronic Circuit Designers, Computer Aided Design Specialists, Electronic Engineering undergraduates and graduates taking courses in Advanced Electronic Circuit Design.




Tolerance Design


Book Description

Tolerance Design recognizes this development process as the responsibility of the entire team and provides practical solutions that each team member can readily apply. The step-by-step details of analytical and experimental tolerance development methods are clearly explained, and as a result, you will be able to develop tolerances more economically. The book is presented in four sections: Introductory topics to position the tolerance development process, Traditional Analytical and Computer-Aided Tolerance Development, Taguchis Approach to Experimental Methods of Tolerance Development, as well as several actual industrial case studies illustrating the books concepts. This book includes a major emphasis for Tolerance Design using Taguchis Quality Loss Function in harmony with Motorolas famous methods for Six Sigma quality. The blend of practical examples with substantive case studies provides a comprehensive process approach to tolerance development. Any company interested in properly developing tolerances for their manufacturing, assembly, or service communities will find this text to be a thorough and effective training resource and reference handbook. Students of design and engine




Introduction to Engineering Statistics and Lean Sigma


Book Description

Lean production, has long been regarded as critical to business success in many industries. Over the last ten years, instruction in six sigma has been increasingly linked with learning about the elements of lean production. Introduction to Engineering Statistics and Lean Sigma builds on the success of its first edition (Introduction to Engineering Statistics and Six Sigma) to reflect the growing importance of the "lean sigma" hybrid. As well as providing detailed definitions and case studies of all six sigma methods, Introduction to Engineering Statistics and Lean Sigma forms one of few sources on the relationship between operations research techniques and lean sigma. Readers will be given the information necessary to determine which sigma methods to apply in which situation, and to predict why and when a particular method may not be effective. Methods covered include: • control charts and advanced control charts, • failure mode and effects analysis, • Taguchi methods, • gauge R&R, and • genetic algorithms. The second edition also greatly expands the discussion of Design For Six Sigma (DFSS), which is critical for many organizations that seek to deliver desirable products that work first time. It incorporates recently emerging formulations of DFSS from industry leaders and offers more introductory material on the design of experiments, and on two level and full factorial experiments, to help improve student intuition-building and retention. The emphasis on lean production, combined with recent methods relating to Design for Six Sigma (DFSS), makes Introduction to Engineering Statistics and Lean Sigma a practical, up-to-date resource for advanced students, educators, and practitioners.




High Definition


Book Description

A pioneering title, High Definition explores theonslaught of new and highly accurate digital metrology tools inlarge- and small-scale 3-D scanning and 3-D modelling. Capable ofmeasuring space to an accuracy of less than 1 mm, these tools offerunprecedented precision for the development and interrogation ofdesign before, during and post production. Over the last decade orso, the array of designers’ digital tools to propose and maketheir ideas have evolved significantly, but the absence ofhigh-accuracy, zero-tolerance design production has often remainedthe missing piece between design and fulfilment. Innovativetechnologies are thus substantially recalibrating the way thatdesigners operate in the world between the drawn and the made,having the power to transform the architect’s role from thatof visualiser to one that is intensely involved with therealisation of objects and buildings. High Definition willexamine the capabilities of advanced technologies in designproduction through their impact on design theory, practice andgreater levels of collaboration between design and manufacturing.It will permeate the entangled world between means and meaning andunravel a new understanding between the representation andproduction of architectural design. Contributors include: Philip Beesley, Centre for AdvancedSpatial Analysis, Gehry Technologies, Ruairi Glynn, Zaha HadidArchitects, ScanLAB Projects, Territorial Agency, Skylar Tibbits,Mike Webb.




Fault-Tolerant Design


Book Description

This textbook serves as an introduction to fault-tolerance, intended for upper-division undergraduate students, graduate-level students and practicing engineers in need of an overview of the field. Readers will develop skills in modeling and evaluating fault-tolerant architectures in terms of reliability, availability and safety. They will gain a thorough understanding of fault tolerant computers, including both the theory of how to design and evaluate them and the practical knowledge of achieving fault-tolerance in electronic, communication and software systems. Coverage includes fault-tolerance techniques through hardware, software, information and time redundancy. The content is designed to be highly accessible, including numerous examples and exercises. Solutions and powerpoint slides are available for instructors.




Advanced Tolerancing Techniques


Book Description

This is the first book to provide a comprehensive coverage of new developments in geometric dimensional tolerancing and statistical tolerancing, and to focus on the use of these techniques in a CAD/CAM/CMM environment. The authors explore and explain tolerancing from its history and fundamentals to state-of-the-art techniques. They also describe specialized applications of tolerancing in particular industries, inclduing automobiles, electronics and aerospace.




Mechanical Tolerance Stackup and Analysis


Book Description

Written by one of the foremost authorities in the field, Mechanical Tolerance Stackup and Analysis presents proven and easy-to-use methods for determining whether selected dimensioning and tolerancing schemes will yield functional parts and assemblies and the most practical procedure to communicate the results. Using a variety of examples and real-




Geometric Design Tolerancing: Theories, Standards and Applications


Book Description

The importance of proper geometric dimensioning and tolerancing as a means of expressing the designer's functional intent and controlling the inevitable geometric and dimensional variations of mechanical parts and assemblies, is becoming well recognized. The research efforts and innovations in the field of tolerancing design, the development of supporting tools, techniques and algorithms, and the significant advances in computing software and hardware all have contributed to its recognition as a viable area of serious scholarly contributions. The field of tolerancing design is successfully making the transition to maturity where deeper insights and sound theories are being developed to offer explanations, and reliable implementations are introduced to provide solutions. Machine designers realized very early that manufacturing processes do not produce the nominal dimensions of designed parts. The notion of associating a lower and an upper limit, referred to as tolerances, with each dimen sion was introduced. Tolerances were specified to ensure the proper function of mating features. Fits of mating features included clearances, location fits, and interference fits, with various sub-grades in each category assigned a tolerance value depending on the nominal size of the mating features. During the inspection process, a part is rejected if a dimension fell outside the specified range. As the accuracy requirements in assemblies became tighter, designers had to consider other critical dimensions and allocate tolerances to them in order to ensure the assembly's functionality.