Tomita's Lectures on Observable Algebras in Hilbert Space


Book Description

​This book is devoted to the study of Tomita's observable algebras, their structure and applications. It begins by building the foundations of the theory of T*-algebras and CT*-algebras, presenting the major results and investigating the relationship between the operator and vector representations of a CT*-algebra. It is then shown via the representation theory of locally convex*-algebras that this theory includes Tomita–Takesaki theory as a special case; every observable algebra can be regarded as an operator algebra on a Pontryagin space with codimension 1. All of the results are proved in detail and the basic theory of operator algebras on Hilbert space is summarized in an appendix. The theory of CT*-algebras has connections with many other branches of functional analysis and with quantum mechanics. The aim of this book is to make Tomita’s theory available to a wider audience, with the hope that it will be used by operator algebraists and researchers in these related fields.




The Legacy of John Von Neumann


Book Description

The ideas of John von Neumann have had a profound influence on modern mathematics and science. One of the great thinkers of our century, von Neumann initiated major branches of mathematics--from operator algebras to game theory to scientific computing--and had a fundamental impact on such areas as self-adjoint operators, ergodic theory and the foundations of quantum mechanics, and numerical analysis and the design of the modern computer. This volume contains the proceedings of an AMS Symposium in Pure Mathematics, held at Hofstra University, in May 1988. The symposium brought together some of the foremost researchers in the wide range of areas in which von Neumann worked. These articles illustrate the sweep of von Neumann's ideas and thinking and document their influence on contemporary mathematics. In addition, some of those who knew von Neumann when he was alive have presented here personal reminiscences about him. This book is directed to those interested in operator theory, game theory, ergodic theory, and scientific computing, as well as to historians of mathematics and others having an interest in the contemporary history of the mathematical sciences. This book will give readers an appreciation for the workings of the mind of one of the mathematical giants of our time.




C*-Algebras and W*-Algebras


Book Description

From the reviews: "This book is an excellent and comprehensive survey of the theory of von Neumann algebras. It includes all the fundamental results of the subject, and is a valuable reference for both the beginner and the expert." Mathematical Reviews




Classical And Quantum Systems: Foundations And Symmetries - Proceedings Of The 2nd International Wigner Symposium


Book Description

The Wigner Symposium series is focussed on fundamental problems and new developments in physics and their experimental, theoretical and mathematical aspects. Particular emphasis is given to those topics which have developed from the work of Eugene P Wigner. The 2nd Wigner symposium is centered around notions of symmetry and geometry, the foundations of quantum mechanics, quantum optics and particle physics. Other fields like dynamical systems, neural networks and physics of information are also represented.This volume brings together 19 plenary lectures which survey latest developments and more than 130 contributed research reports.




Quantum Mathematics II


Book Description

This book is the second volume that provides an unique overview of the most recent and relevant contributions in the field of mathematical physics with a focus on the mathematical features of quantum mechanics. It is a collection of review papers together with brand new works related to the activities of the INdAM Intensive Period "INdAM Quantum Meetings (IQM22)", which took place at the Politecnico di Milano in Spring 2022 at Politecnico di Milano. The range of topics covered by the book is wide, going ranging from many-body quantum mechanics to quantum field theory and open quantum systems.







Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano- and Bio-systems


Book Description

This monograph provides a mathematical foundation to the theory of quantum information and computation, with applications to various open systems including nano and bio systems. It includes introductory material on algorithm, functional analysis, probability theory, information theory, quantum mechanics and quantum field theory. Apart from standard material on quantum information like quantum algorithm and teleportation, the authors discuss findings on the theory of entropy in C*-dynamical systems, space-time dependence of quantum entangled states, entangling operators, adaptive dynamics, relativistic quantum information, and a new paradigm for quantum computation beyond the usual quantum Turing machine. Also, some important applications of information theory to genetics and life sciences, as well as recent experimental and theoretical discoveries in quantum photosynthesis are described.




Quantum and Non-Commutative Analysis


Book Description

In the past decade, there has been a sudden and vigorous development in a number of research areas in mathematics and mathematical physics, such as theory of operator algebras, knot theory, theory of manifolds, infinite dimensional Lie algebras and quantum groups (as a new topics), etc. on the side of mathematics, quantum field theory and statistical mechanics on the side of mathematical physics. The new development is characterized by very strong relations and interactions between different research areas which were hitherto considered as remotely related. Focussing on these new developments in mathematical physics and theory of operator algebras, the International Oji Seminar on Quantum Analysis was held at the Kansai Seminar House, Kyoto, JAPAN during June 25-29, 1992 by a generous sponsorship of the Japan Society for the Promotion of Science and the Fujihara Foundation of Science, as a workshop of relatively small number of (about 50) invited participants. This was followed by an open Symposium at RIMS, described below by its organizer, A. Kishimoto. The Oji Seminar began with two key-note addresses, one by V.F.R. Jones on Spin Models in Knot Theory and von Neumann Algebras and by A. Jaffe on Where Quantum Field Theory Has Led. Subsequently topics such as Subfactors and Sector Theory, Solvable Models of Statistical Mechanics, Quantum Field Theory, Quantum Groups, and Renormalization Group Ap proach, are discussed. Towards the end, a panel discussion on Where Should Quantum Analysis Go? was held.




Inner Product Structures


Book Description

Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Oad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.