Top Mass Measurements at the Tevatron Run II.


Book Description

The latest top quark mass measurements by the CDF and D0 experiments are presented here. The mass has been determined in the dilepton (t{bar t} {yields} e{mu}, ee, {mu}{mu} + jets + E{sub T}) and lepton plus jets (t{bar t} {yields} e or {mu} + jets + E{sub T}) final states. The most accurate single result from lepton plus jets channel is 173.5{sub -3.6}{sup +3.7}(stat. + Jet Energy Scale Systematic) {+-} 1.3(syst.) GeV/c{sup 2}, which is better than the combined CDF and D0 Run I average. A preliminary and unofficial average of the best experimental Run II results gives M{sub top} = 172.7 {+-} 3.5 GeV/c{sup 2}.




Top Quark Mass Measurements at the Tevatron


Book Description

Top quark mass measurements from the Tevatron using up to 2.0 fb−1 of data are presented. Prospects for combined Tevatron measurements by the end of Run II are discussed.




Top Quark Mass Measurement at the Tevatron


Book Description

The authors report on the latest experimental measurements of the top quark mass by the CDF and D0 Collaborations at the Fermilab Tevatron. They present a new top mass measurement using the t{bar t} events collected by the D0 Collaboration in Run I between 1994 and 1996. This result is combined with previous measurements to yield a new world top mass average. They also describe several preliminary results using up to 193 pb{sup -1} of t{bar t} events produced in {bar p}p collisions at {radical}s = 1.96 TeV during the Run II of the Tevatron.




To Quark Mass Measurements at the Tevatron


Book Description

We present two new measurements of the top-quark mass. Using the same methodology applied in Run I, the CDF experiment uses 72 pb−1 of Run II data to measure M{sub top} = 171.2 " 13.4{sub stat} " 99{sub syst} GeV/c2. On the other hand, the D0 experiment, using 125 pb−1 from Run I, and applying a new method that extracts information from data through a direct calculation of a probability for each event, obtains M{sub top} = 180.1 " 3.6{sub stat} " 4.0{sub syst} GeV/c2.










Measurement of the W and Top Mass at the Tevatron


Book Description

The measurements of the mass of the W boson (M{sub W}) and of the top quark (M{sub t}) are important for three reasons: (i) these masses represent fundamental parameters of the Standard Model; (ii) they determine the coupling between the top quark and the Higgs boson, the coupling being proportional to M{sub t}2/M{sub W}2; and (iii) radiative corrections relate the masses of the W, top quark and the Higgs boson: an accurate measurement of M{sub W} and M{sub t} would provide a constraint on the Higgs mass (M{sub H}). We present here the measurements obtained by the CDF and D0 collaborations corresponding to the so-called Run I of data-taking (1992-95, (almost equal to) 100 pb−1 each) at the Tevatron (p{bar p} collisions, (square root)s = 1.8 TeV). In addition we report on the improvements expected for these measurements in the current run (so-called Run IIa) which, having just started (March 2001), is expected to collect about 2 fb−1 by the year 2004.




Measurement of the Top Quark Mass in the Dilepton Final State Using the Matrix Element Method


Book Description

The main pacemakers of scienti?c research are curiosity, ingenuity, and a pinch of persistence. Equipped with these characteristics a young researcher will be s- cessful in pushing scienti?c discoveries. And there is still a lot to discover and to understand. In the course of understanding the origin and structure of matter it is now known that all matter is made up of six types of quarks. Each of these carry a different mass. But neither are the particular mass values understood nor is it known why elementary particles carry mass at all. One could perhaps accept some small generic mass value for every quark, but nature has decided differently. Two quarks are extremely light, three more have a somewhat typical mass value, but one quark is extremely massive. It is the top quark, the heaviest quark and even the heaviest elementary particle that we know, carrying a mass as large as the mass of three iron nuclei. Even though there exists no explanation of why different particle types carry certain masses, the internal consistency of the currently best theory—the standard model of particle physics—yields a relation between the masses of the top quark, the so-called W boson, and the yet unobserved Higgs particle. Therefore, when one assumes validity of the model, it is even possible to take precise measurements of the top quark mass to predict the mass of the Higgs (and potentially other yet unobserved) particles.




High Energy Physics


Book Description

The 32nd International Conference on High Energy Physics belongs to the Rochester Conference Series, and is the most important international conference in 2004 on high energy physics. The proceedings provide a comprehensive review on the recent developments in experimental and theoretical particle physics. The latest results on Top, Higgs search, CP violation, neutrino mixing, pentaquarks, heavy quark mesons and baryons, search for new particles and new phenomena, String theory, Extra dimension, Black hole and Lattice calculation are discussed extensively. The topics covered include not only those of main interest to the high energy physics community, but also recent research and future plans. Contents: Neutrino Masses and MixingsQuark Matter and Heavy Ion CollisionsParticle Astrophysics and CosmologyElectroweak PhysicsQCD Hard InteractionsQCD Soft InteractionsComputational Quantum Field TheoryCP Violation, Rare Kaon Decay and CKMR&D for Future Accelerator and DetectorHadron Spectroscopy and ExoticsHeavy Quark Mesons and BaryonsBeyond the Standard ModelString Theory Readership: Experimental and theoretical physicists and graduate students in the fields of particle physics, nuclear physics, astrophysics and cosmology.Keywords:High Energy Physics;Particle Physics;Electroweak;QCD;Heavy Quark;Neutrino;Particle Astrophysics;Hadron Spectroscopy;CP Violation;Quark Matter;Future Accelerator




Top Quark Physics at Hadron Colliders


Book Description

This will be a required acquisition text for academic libraries. More than ten years after its discovery, still relatively little is known about the top quark, the heaviest known elementary particle. This extensive survey summarizes and reviews top-quark physics based on the precision measurements at the Fermilab Tevatron Collider, as well as examining in detail the sensitivity of these experiments to new physics. Finally, the author provides an overview of top quark physics at the Large Hadron Collider.