Topex Project Radar Altimeter Development Requirements and Specifications, Version 6.0


Book Description

This document provides the guidelines by which the TOPEX Radar Altimeter hardware development effort for the TOPEX flight project shall be implemented and conducted. The conduct of this activity shall take maximum advantage of the efforts expended during the TOPEX Radar Altimeter Advanced Technology Model development program and other related Radar Altimeter development efforts. This document complies with the TOPEX Project Office document 633-420 (D-2218), entitled, "TOPEX Project Requirements and Constraints for the NASA Radar Altimeter" dated December 1987.Rossi, Laurence C.Wallops Flight FacilityRADIO ALTIMETERS; SPECIFICATIONS; TOPEX; NASA PROGRAMS; OCEAN SURFACE; SATELLITE ATTITUDE CONTROL; BACKSCATTERING; HARDWARE; REFLECTANCE; EARTH IONOSPHERE; SPACECRAFT DESIGN; TEMPERATURE CONTROL







Principles of Ocean Physics


Book Description

In recent years, significant advances in both the theoretical and observational sides of physical oceanography have allowed the ocean's physical behavior to be described more quantitatively. This book discusses the physical mechanisms and processes of the sea, and will be valuable not only to oceanographers but also physicists, graduate students, and scientists working in dynamics or optics of the marine environment.




Coastal Altimetry


Book Description

Coastal Altimetry: Selected Case Studies from Asian Shelf Seas provides information on developments over the past decade in the processing of remotely sensed altimetry in coastal areas, with an overview of expected errors and where they stem from, along with remaining gaps in processing. Challenges covered include the retracking of the altimetric signal to account for land contamination, tropospheric water corrections, and tidal model improvements, along with the pros and cons of widely available products. Additional chapters provide recent research in the regional seas of Asia and cover variability, dynamics, predictability and prediction, impacts of extreme events, effects to ecosystems, and more. This book offers readers a dataset that can illuminate our understanding of the propagation of planetary boundary waves that have a significant sea level signal in near coastal regions. As such, researchers and students who have a foundation in satellite altimetry and want to know the latest development of open ocean and coastal satellite altimetry, especially in Asian coastal regions, will benefit from this book. - Presents the advancement of coastal altimetry technologies from various dedicated experts - Includes case studies throughout to give real-life examples that can be implemented globally - Provides chapters that include summaries of key points and an outlook to the future




Satellite Altimetry and Earth Sciences


Book Description

The new level of precision and global coverage provided by satellite altimetry is rapidly advancing studies of ocean circulation. It allows for new insights into marine geodesy, ice sheet movements, plate tectonics, and for the first time provides high-resolution bathymetry for previously unmapped regions of our watery planet and crucial information on the large-scale ocean features on intra-season to interannual time scales. Satellite Altimetry and Earth Sciences has integrated the expertise of the leading international researchers to demonstrate the techniques, missions, and accuracy of satellite altimetry, including altimeter measurements, orbit determination, and ocean circulation models.Satellite altimetry is helping to advance studies of ocean circulation, tides, sea level, surface waves and allowing new insights into marine geodesy. Satellite Altimetry and Earth Sciences provides high resolution bathymetry for previously unmapped regions of our watery planet.Satellite Altimetry and Earth Sciences is for a very broad spectrum of academics, graduate students, and researchers in geophysics, oceanography, and the space and earth sciences. International agencies that fund satellite-based research will also appreciate the handy reference on the applications of satellite altimetry.




Geodetic Sciences


Book Description

Advances in space-borne technologies lead to improvements in observations and have a notable impact on geodesy and its applications. As a consequence of these improvements in data accuracies, spatial and temporal resolutions, as well as the developments in the methodologies, more detailed analyses of the Earth and a deeper understanding of its state and dynamic processes are possible today. From this perspective, this book is a collection of the selected reviews and case-study articles that report the advances in methodology and applications in geodesy. The chapters in the book are mainly dedicated to the Earth’s gravity field theory and applications, sea level monitoring and analysis, navigation satellite systems data and applications, and monitoring networks for tectonic deformations. This collection is a current state analysis of the geodetic research in theory and applications in today’s modern world.




Satellite Altimetry Over Oceans and Land Surfaces


Book Description

Satellite remote sensing, in particular by radar altimetry, is a crucial technique for observations of the ocean surface and of many aspects of land surfaces, and of paramount importance for climate and environmental studies. This book provides a state-of-the-art overview of the satellite altimetry techniques and related missions, and reviews the most-up-to date applications to ocean dynamics and sea level. It also discusses related space-based observations of the ocean surface and of the marine geoid, as well as applications of satellite altimetry to the cryosphere and land surface waters; operational oceanography and its applications to navigation, fishing and defense.







Precise Geodetic Infrastructure


Book Description

Geodesy is the science of accurately measuring and understanding three fundamental properties of Earth: its geometric shape, its orientation in space, and its gravity field, as well as the changes of these properties with time. Over the past half century, the United States, in cooperation with international partners, has led the development of geodetic techniques and instrumentation. Geodetic observing systems provide a significant benefit to society in a wide array of military, research, civil, and commercial areas, including sea level change monitoring, autonomous navigation, tighter low flying routes for strategic aircraft, precision agriculture, civil surveying, earthquake monitoring, forest structural mapping and biomass estimation, and improved floodplain mapping. Recognizing the growing reliance of a wide range of scientific and societal endeavors on infrastructure for precise geodesy, and recognizing geodetic infrastructure as a shared national resource, this book provides an independent assessment of the benefits provided by geodetic observations and networks, as well as a plan for the future development and support of the infrastructure needed to meet the demand for increasingly greater precision. Precise Geodetic Infrastructure makes a series of focused recommendations for upgrading and improving specific elements of the infrastructure, for enhancing the role of the United States in international geodetic services, for evaluating the requirements for a geodetic workforce for the coming decades, and for providing national coordination and advocacy for the various agencies and organizations that contribute to the geodetic infrastructure.