Mathematics Form and Function


Book Description

This book records my efforts over the past four years to capture in words a description of the form and function of Mathematics, as a background for the Philosophy of Mathematics. My efforts have been encouraged by lec tures that I have given at Heidelberg under the auspices of the Alexander von Humboldt Stiftung, at the University of Chicago, and at the University of Minnesota, the latter under the auspices of the Institute for Mathematics and Its Applications. Jean Benabou has carefully read the entire manuscript and has offered incisive comments. George Glauberman, Car los Kenig, Christopher Mulvey, R. Narasimhan, and Dieter Puppe have provided similar comments on chosen chapters. Fred Linton has pointed out places requiring a more exact choice of wording. Many conversations with George Mackey have given me important insights on the nature of Mathematics. I have had similar help from Alfred Aeppli, John Gray, Jay Goldman, Peter Johnstone, Bill Lawvere, and Roger Lyndon. Over the years, I have profited from discussions of general issues with my colleagues Felix Browder and Melvin Rothenberg. Ideas from Tammo Tom Dieck, Albrecht Dold, Richard Lashof, and Ib Madsen have assisted in my study of geometry. Jerry Bona and B.L. Foster have helped with my examina tion of mechanics. My observations about logic have been subject to con structive scrutiny by Gert Miiller, Marian Boykan Pour-El, Ted Slaman, R. Voreadou, Volker Weispfennig, and Hugh Woodin.




Diagram Geometry


Book Description

This book provides a self-contained introduction to diagram geometry. Tight connections with group theory are shown. It treats thin geometries (related to Coxeter groups) and thick buildings from a diagrammatic perspective. Projective and affine geometry are main examples. Polar geometry is motivated by polarities on diagram geometries and the complete classification of those polar geometries whose projective planes are Desarguesian is given. It differs from Tits' comprehensive treatment in that it uses Veldkamp's embeddings. The book intends to be a basic reference for those who study diagram geometry. Group theorists will find examples of the use of diagram geometry. Light on matroid theory is shed from the point of view of geometry with linear diagrams. Those interested in Coxeter groups and those interested in buildings will find brief but self-contained introductions into these topics from the diagrammatic perspective. Graph theorists will find many highly regular graphs. The text is written so graduate students will be able to follow the arguments without needing recourse to further literature. A strong point of the book is the density of examples.




Generalized Voronoi Diagram: A Geometry-Based Approach to Computational Intelligence


Book Description

The year 2008 is a memorial year for Georgiy Vorono (1868-1908), with a number of events in the scientific community commemorating his tremendous contribution to the area of mathematics, especially number theory, through conferences and scientific gatherings in his honor. A notable event taking place in September 2008 a joint c- ference: the 5th Annual International Symposium on Voronoi Diagrams (ISVD) and the 4th International Conference on Analytic Number Theory and Spatial Tessel- tions held in Kyiv, Georgiy Vorono ’s native land. The main ideas expressed by G. Vorono ’s through his fundamental works have influenced and shaped the key dev- opments in computation geometry, image recognition, artificial intelligence, robotics, computational science, navigation and obstacle avoidance, geographical information systems, molecular modeling, astrology, physics, quantum computing, chemical en- neering, material sciences, terrain modeling, biometrics and other domains. This book is intended to provide the reader with in-depth overview and analysis of the fundamental methods and techniques developed following G. Voronoi ideas, in the context of the vast and increasingly growing area of computational intelligence. It represents the collection of state-of-the art research methods merging the bridges between two areas: geometric computing through Voronoi diagrams and intelligent computation techniques, pushing the limits of current knowledge in the area, impr- ing on previous solutions, merging sciences together, and inventing new ways of approaching difficult applied problems.




The Four Pillars of Geometry


Book Description

This book is unique in that it looks at geometry from 4 different viewpoints - Euclid-style axioms, linear algebra, projective geometry, and groups and their invariants Approach makes the subject accessible to readers of all mathematical tastes, from the visual to the algebraic Abundantly supplemented with figures and exercises




Computer Graphics and Geometric Modelling


Book Description

Possibly the most comprehensive overview of computer graphics as seen in the context of geometric modeling, this two-volume work covers implementation and theory in a thorough and systematic fashion. It covers the computer graphics part of the field of geometric modeling and includes all the standard computer graphics topics. The CD-ROM features two companion programs.




Buildings, Finite Geometries and Groups


Book Description

This is the Proceedings of the ICM 2010 Satellite Conference on “Buildings, Finite Geometries and Groups” organized at the Indian Statistical Institute, Bangalore, during August 29 – 31, 2010. This is a collection of articles by some of the currently very active research workers in several areas related to finite simple groups, Chevalley groups and their generalizations: theory of buildings, finite incidence geometries, modular representations, Lie theory, etc. These articles reflect the current major trends in research in the geometric and combinatorial aspects of the study of these groups. The unique perspective the authors bring in their articles on the current developments and the major problems in their area is expected to be very useful to research mathematicians, graduate students and potential new entrants to these areas.




Categorical, Combinatorial and Geometric Representation Theory and Related Topics


Book Description

This book is the third Proceedings of the Southeastern Lie Theory Workshop Series covering years 2015–21. During this time five workshops on different aspects of Lie theory were held at North Carolina State University in October 2015; University of Virginia in May 2016; University of Georgia in June 2018; Louisiana State University in May 2019; and College of Charleston in October 2021. Some of the articles by experts in the field describe recent developments while others include new results in categorical, combinatorial, and geometric representation theory of algebraic groups, Lie (super) algebras, and quantum groups, as well as on some related topics. The survey articles will be beneficial to junior researchers. This book will be useful to any researcher working in Lie theory and related areas.




Helping Children Learn Mathematics


Book Description

Results from national and international assessments indicate that school children in the United States are not learning mathematics well enough. Many students cannot correctly apply computational algorithms to solve problems. Their understanding and use of decimals and fractions are especially weak. Indeed, helping all children succeed in mathematics is an imperative national goal. However, for our youth to succeed, we need to change how we're teaching this discipline. Helping Children Learn Mathematics provides comprehensive and reliable information that will guide efforts to improve school mathematics from pre-kindergarten through eighth grade. The authors explain the five strands of mathematical proficiency and discuss the major changes that need to be made in mathematics instruction, instructional materials, assessments, teacher education, and the broader educational system and answers some of the frequently asked questions when it comes to mathematics instruction. The book concludes by providing recommended actions for parents and caregivers, teachers, administrators, and policy makers, stressing the importance that everyone work together to ensure a mathematically literate society.




A Mathematics Sampler


Book Description

Now in its fifth edition, A Mathematics Sampler presents mathematics as both science and art, focusing on the historical role of mathematics in our culture. It uses selected topics from modern mathematics--including computers, perfect numbers, and four-dimensional geometry--to exemplify the distinctive features of mathematics as an intellectual endeavor, a problem-solving tool, and a way of thinking about the rapidly changing world in which we live. A Mathematics Sampler also includes unique LINK sections throughout the book, each of which connects mathematical concepts with areas of interest throughout the humanities. The original course on which this text is based was cited as an innovative approach to liberal arts mathematics in Lynne Cheney's report, "50 HOURS: A Core Curriculum for College Students", published by the National Endowment for the Humanities.




Geometric Methods and Applications


Book Description

As an introduction to fundamental geometric concepts and tools needed for solving problems of a geometric nature using a computer, this book fills the gap between standard geometry books, which are primarily theoretical, and applied books on computer graphics, computer vision, or robotics that do not cover the underlying geometric concepts in detail. Gallier offers an introduction to affine, projective, computational, and Euclidean geometry, basics of differential geometry and Lie groups, and explores many of the practical applications of geometry. Some of these include computer vision, efficient communication, error correcting codes, cryptography, motion interpolation, and robot kinematics. This comprehensive text covers most of the geometric background needed for conducting research in computer graphics, geometric modeling, computer vision, and robotics and as such will be of interest to a wide audience including computer scientists, mathematicians, and engineers.