Book Description
The momentum equation governing mean longshore currents on straight beaches is a balance of forcing from the momentum transfer of the oscillatory wave motion, turbulent momentum transfer (mixing), and bottom stress. Of these, the wave's contribution is well understood, but the remaining two are not, principally due to the complicated hydrodynamics of the surf-zone. Addressing the bottom stress term, a longshore current model is developed which includes a modification of the bottom stress due to the effects of breaking-wave induced turbulence. A one-dimensional turbulent kinetic energy equation is used to model this breaking-wave induced turbulence, producing a spatially varying bottom friction coefficient. The modeled longshore current cross-shore profiles show improved agreement with field observations. In a second bottom stress study, vertical profiles of mean longshore currents are examined using field data obtained with vertically stacked electromagnetic current meters with the goal of measuring the bottom stress and its associated drag coefficient. The profiles are observed to become vertically uniform whenever the ratio of wave height to depth exceeds 0.3, indicating that nearly all of the waves passing a given location are breaking. Finally, horizontal turbulent momentum transfer (mixing) is examined for the case of shear instabilities of the longshore current.