Topics in Mathematical Biology


Book Description

This book analyzes the impact of quiescent phases on biological models. Quiescence arises, for example, when moving individuals stop moving, hunting predators take a rest, infected individuals are isolated, or cells enter the quiescent compartment of the cell cycle. In the first chapter of Topics in Mathematical Biology general principles about coupled and quiescent systems are derived, including results on shrinking periodic orbits and stabilization of oscillations via quiescence. In subsequent chapters classical biological models are presented in detail and challenged by the introduction of quiescence. These models include delay equations, demographic models, age structured models, Lotka-Volterra systems, replicator systems, genetic models, game theory, Nash equilibria, evolutionary stable strategies, ecological models, epidemiological models, random walks and reaction-diffusion models. In each case we find new and interesting results such as stability of fixed points and/or periodic orbits, excitability of steady states, epidemic outbreaks, survival of the fittest, and speeds of invading fronts. The textbook is intended for graduate students and researchers in mathematical biology who have a solid background in linear algebra, differential equations and dynamical systems. Readers can find gems of unexpected beauty within these pages, and those who knew K.P. (as he was often called) well will likely feel his presence and hear him speaking to them as they read.




Introduction to Mathematical Biology


Book Description

This book is based on a one semester course that the authors have been teaching for several years, and includes two sets of case studies. The first includes chemostat models, predator-prey interaction, competition among species, the spread of infectious diseases, and oscillations arising from bifurcations. In developing these topics, readers will also be introduced to the basic theory of ordinary differential equations, and how to work with MATLAB without having any prior programming experience. The second set of case studies were adapted from recent and current research papers to the level of the students. Topics have been selected based on public health interest. This includes the risk of atherosclerosis associated with high cholesterol levels, cancer and immune interactions, cancer therapy, and tuberculosis. Readers will experience how mathematical models and their numerical simulations can provide explanations that guide biological and biomedical research. Considered to be the undergraduate companion to the more advanced book "Mathematical Modeling of Biological Processes" (A. Friedman, C.-Y. Kao, Springer – 2014), this book is geared towards undergraduate students with little background in mathematics and no biological background.




Essential Mathematical Biology


Book Description

This self-contained introduction to the fast-growing field of Mathematical Biology is written for students with a mathematical background. It sets the subject in a historical context and guides the reader towards questions of current research interest. A broad range of topics is covered including: Population dynamics, Infectious diseases, Population genetics and evolution, Dispersal, Molecular and cellular biology, Pattern formation, and Cancer modelling. Particular attention is paid to situations where the simple assumptions of homogenity made in early models break down and the process of mathematical modelling is seen in action.




Mathematical Ideas in Biology


Book Description

"An introduction to some of the mathematical ideas which are useful to biologists, ... the ways in which biological problems can be expressed mathematically, and how the mathematical equations which arise in biological work can be solved ... This book is particularly concerned with non-statistical topics"--From publisher description.




Mathematical Biology


Book Description

This text presents mathematical biology as a field with a unity of its own, rather than only the intrusion of one science into another. The book focuses on problems of contemporary interest, such as cancer, genetics, and the rapidly growing field of genomics.




Mathematical Methods in Biology


Book Description

A one-of-a-kind guide to using deterministic and probabilistic methods for solving problems in the biological sciences Highlighting the growing relevance of quantitative techniques in scientific research, Mathematical Methods in Biology provides an accessible presentation of the broad range of important mathematical methods for solving problems in the biological sciences. The book reveals the growing connections between mathematics and biology through clear explanations and specific, interesting problems from areas such as population dynamics, foraging theory, and life history theory. The authors begin with an introduction and review of mathematical tools that are employed in subsequent chapters, including biological modeling, calculus, differential equations, dimensionless variables, and descriptive statistics. The following chapters examine standard discrete and continuous models using matrix algebra as well as difference and differential equations. Finally, the book outlines probability, statistics, and stochastic methods as well as material on bootstrapping and stochastic differential equations, which is a unique approach that is not offered in other literature on the topic. In order to demonstrate the application of mathematical methods to the biological sciences, the authors provide focused examples from the field of theoretical ecology, which serve as an accessible context for study while also demonstrating mathematical skills that are applicable to many other areas in the life sciences. The book's algorithms are illustrated using MATLAB®, but can also be replicated using other software packages, including R, Mathematica®, and Maple; however, the text does not require any single computer algebra package. Each chapter contains numerous exercises and problems that range in difficulty, from the basic to more challenging, to assist readers with building their problem-solving skills. Selected solutions are included at the back of the book, and a related Web site features supplemental material for further study. Extensively class-tested to ensure an easy-to-follow format, Mathematical Methods in Biology is an excellent book for mathematics and biology courses at the upper-undergraduate and graduate levels. It also serves as a valuable reference for researchers and professionals working in the fields of biology, ecology, and biomathematics.




Mathematical Biology II


Book Description

This richly illustrated third edition provides a thorough training in practical mathematical biology and shows how exciting mathematical challenges can arise from a genuinely interdisciplinary involvement with the biosciences. It has been extensively updated and extended to cover much of the growth of mathematical biology. From the reviews: ""This book, a classical text in mathematical biology, cleverly combines mathematical tools with subject area sciences."--SHORT BOOK REVIEWS




Mathematical Biology


Book Description

Mathematical Biology is a richly illustrated textbook in an exciting and fast growing field. Providing an in-depth look at the practical use of math modeling, it features exercises throughout that are drawn from a variety of bioscientific disciplines - population biology, developmental biology, physiology, epidemiology, and evolution, among others. It maintains a consistent level throughout so that graduate students can use it to gain a foothold into this dynamic research area.




Introduction to Mathematical Biology


Book Description

Developed from the author's course in mathematical biology at Cornell University, this volume is designed to cultivate in graduate biology students an awareness of and familiarity with applications of mathematical techniques and methods related to biology.This text explores five areas of mathematical biology, which are unified by their underlying mathematical structure. The first three subjects (cell growth, enzymatic reactions, and physiological tracers) are biological; the final two (biological fluid dynamics and diffusion) are biophysical. Introduced in an order of progressive mathematical complexity, the topics essentially follow a course in elementary differential equations, although linear algebra and graph theory are also touched upon.Free of mathematical jargon, the text requires only a knowledge of elementary calculus. A set of problems appears at the end of each chapter, with solutions at the end of the book. In addition to its value to biology students, this text will also prove useful to students with backgrounds in mathematics, physics, and engineering, who possess little knowledge of biology but nevertheless take an interest in the quantitative approach.




Methods and Models in Mathematical Biology


Book Description

This book developed from classes in mathematical biology taught by the authors over several years at the Technische Universität München. The main themes are modeling principles, mathematical principles for the analysis of these models and model-based analysis of data. The key topics of modern biomathematics are covered: ecology, epidemiology, biochemistry, regulatory networks, neuronal networks and population genetics. A variety of mathematical methods are introduced, ranging from ordinary and partial differential equations to stochastic graph theory and branching processes. A special emphasis is placed on the interplay between stochastic and deterministic models.