Advanced Topics in Types and Programming Languages


Book Description

A thorough and accessible introduction to a range of key ideas in type systems for programming language. The study of type systems for programming languages now touches many areas of computer science, from language design and implementation to software engineering, network security, databases, and analysis of concurrent and distributed systems. This book offers accessible introductions to key ideas in the field, with contributions by experts on each topic. The topics covered include precise type analyses, which extend simple type systems to give them a better grip on the run time behavior of systems; type systems for low-level languages; applications of types to reasoning about computer programs; type theory as a framework for the design of sophisticated module systems; and advanced techniques in ML-style type inference. Advanced Topics in Types and Programming Languages builds on Benjamin Pierce's Types and Programming Languages (MIT Press, 2002); most of the chapters should be accessible to readers familiar with basic notations and techniques of operational semantics and type systems—the material covered in the first half of the earlier book. Advanced Topics in Types and Programming Languages can be used in the classroom and as a resource for professionals. Most chapters include exercises, ranging in difficulty from quick comprehension checks to challenging extensions, many with solutions.




Types and Programming Languages


Book Description

A comprehensive introduction to type systems and programming languages. A type system is a syntactic method for automatically checking the absence of certain erroneous behaviors by classifying program phrases according to the kinds of values they compute. The study of type systems—and of programming languages from a type-theoretic perspective—has important applications in software engineering, language design, high-performance compilers, and security. This text provides a comprehensive introduction both to type systems in computer science and to the basic theory of programming languages. The approach is pragmatic and operational; each new concept is motivated by programming examples and the more theoretical sections are driven by the needs of implementations. Each chapter is accompanied by numerous exercises and solutions, as well as a running implementation, available via the Web. Dependencies between chapters are explicitly identified, allowing readers to choose a variety of paths through the material. The core topics include the untyped lambda-calculus, simple type systems, type reconstruction, universal and existential polymorphism, subtyping, bounded quantification, recursive types, kinds, and type operators. Extended case studies develop a variety of approaches to modeling the features of object-oriented languages.




Programming Language Concepts


Book Description

This book uses a functional programming language (F#) as a metalanguage to present all concepts and examples, and thus has an operational flavour, enabling practical experiments and exercises. It includes basic concepts such as abstract syntax, interpretation, stack machines, compilation, type checking, garbage collection, and real machine code. Also included are more advanced topics on polymorphic types, type inference using unification, co- and contravariant types, continuations, and backwards code generation with on-the-fly peephole optimization. This second edition includes two new chapters. One describes compilation and type checking of a full functional language, tying together the previous chapters. The other describes how to compile a C subset to real (x86) hardware, as a smooth extension of the previously presented compilers.The examples present several interpreters and compilers for toy languages, including compilers for a small but usable subset of C, abstract machines, a garbage collector, and ML-style polymorphic type inference. Each chapter has exercises. Programming Language Concepts covers practical construction of lexers and parsers, but not regular expressions, automata and grammars, which are well covered already. It discusses the design and technology of Java and C# to strengthen students’ understanding of these widely used languages.




Design Concepts in Programming Languages


Book Description

Key ideas in programming language design and implementation explained using a simple and concise framework; a comprehensive introduction suitable for use as a textbook or a reference for researchers. Hundreds of programming languages are in use today—scripting languages for Internet commerce, user interface programming tools, spreadsheet macros, page format specification languages, and many others. Designing a programming language is a metaprogramming activity that bears certain similarities to programming in a regular language, with clarity and simplicity even more important than in ordinary programming. This comprehensive text uses a simple and concise framework to teach key ideas in programming language design and implementation. The book's unique approach is based on a family of syntactically simple pedagogical languages that allow students to explore programming language concepts systematically. It takes as premise and starting point the idea that when language behaviors become incredibly complex, the description of the behaviors must be incredibly simple. The book presents a set of tools (a mathematical metalanguage, abstract syntax, operational and denotational semantics) and uses it to explore a comprehensive set of programming language design dimensions, including dynamic semantics (naming, state, control, data), static semantics (types, type reconstruction, polymporphism, effects), and pragmatics (compilation, garbage collection). The many examples and exercises offer students opportunities to apply the foundational ideas explained in the text. Specialized topics and code that implements many of the algorithms and compilation methods in the book can be found on the book's Web site, along with such additional material as a section on concurrency and proofs of the theorems in the text. The book is suitable as a text for an introductory graduate or advanced undergraduate programming languages course; it can also serve as a reference for researchers and practitioners.




Programming Languages: Principles and Paradigms


Book Description

This excellent addition to the UTiCS series of undergraduate textbooks provides a detailed and up to date description of the main principles behind the design and implementation of modern programming languages. Rather than focusing on a specific language, the book identifies the most important principles shared by large classes of languages. To complete this general approach, detailed descriptions of the main programming paradigms, namely imperative, object-oriented, functional and logic are given, analysed in depth and compared. This provides the basis for a critical understanding of most of the programming languages. An historical viewpoint is also included, discussing the evolution of programming languages, and to provide a context for most of the constructs in use today. The book concludes with two chapters which introduce basic notions of syntax, semantics and computability, to provide a completely rounded picture of what constitutes a programming language. /div




Introduction to the Theory of Programming Languages


Book Description

The design and implementation of programming languages, from Fortran and Cobol to Caml and Java, has been one of the key developments in the management of ever more complex computerized systems. Introduction to the Theory of Programming Languages gives the reader the means to discover the tools to think, design, and implement these languages. It proposes a unified vision of the different formalisms that permit definition of a programming language: small steps operational semantics, big steps operational semantics, and denotational semantics, emphasising that all seek to define a relation between three objects: a program, an input value, and an output value. These formalisms are illustrated by presenting the semantics of some typical features of programming languages: functions, recursivity, assignments, records, objects, ... showing that the study of programming languages does not consist of studying languages one after another, but is organized around the features that are present in these various languages. The study of these features leads to the development of evaluators, interpreters and compilers, and also type inference algorithms, for small languages.




Foundations of Programming Languages


Book Description

This clearly written textbook introduces the reader to the three styles of programming, examining object-oriented/imperative, functional, and logic programming. The focus of the text moves from highly prescriptive languages to very descriptive languages, demonstrating the many and varied ways in which we can think about programming. Designed for interactive learning both inside and outside of the classroom, each programming paradigm is highlighted through the implementation of a non-trivial programming language, demonstrating when each language may be appropriate for a given problem. Features: includes review questions and solved practice exercises, with supplementary code and support files available from an associated website; provides the foundations for understanding how the syntax of a language is formally defined by a grammar; examines assembly language programming using CoCo; introduces C++, Standard ML, and Prolog; describes the development of a type inference system for the language Small.




Concepts in Programming Languages


Book Description

A comprehensive undergraduate textbook covering both theory and practical design issues, with an emphasis on object-oriented languages.




An Experiential Introduction to Principles of Programming Languages


Book Description

A textbook that uses a hands-on approach to teach principles of programming languages, with Java as the implementation language. This introductory textbook uses a hands-on approach to teach the principles of programming languages. Using Java as the implementation language, Rajan covers a range of emerging topics, including concurrency, Big Data, and event-driven programming. Students will learn to design, implement, analyze, and understand both domain-specific and general-purpose programming languages. Develops basic concepts in languages, including means of computation, means of combination, and means of abstraction. Examines imperative features such as references, concurrency features such as fork, and reactive features such as event handling. Covers language features that express differing perspectives of thinking about computation, including those of logic programming and flow-based programming. Presumes Java programming experience and understanding of object-oriented classes, inheritance, polymorphism, and static classes. Each chapter corresponds with a working implementation of a small programming language allowing students to follow along.




Principles of Programming Languages


Book Description

By introducing the principles of programming languages, using the Java language as a support, Gilles Dowek provides the necessary fundamentals of this language as a first objective. It is important to realise that knowledge of a single programming language is not really enough. To be a good programmer, you should be familiar with several languages and be able to learn new ones. In order to do this, you’ll need to understand universal concepts, such as functions or cells, which exist in one form or another in all programming languages. The most effective way to understand these universal concepts is to compare two or more languages. In this book, the author has chosen Caml and C. To understand the principles of programming languages, it is also important to learn how to precisely define the meaning of a program, and tools for doing so are discussed. Finally, there is coverage of basic algorithms for lists and trees. Written for students, this book presents what all scientists and engineers should know about programming languages.