Topics in Radiation Dosimetry


Book Description

Radiation Dosimetry, Supplement 1: Topics in Radiation Dosimetry covers instruments and techniques in dealing with special dosimetry problems. The book discusses thermoluminescence dosimetry in archeological dating; dosimetric applications of track etching; vacuum chambers of radiation measurement. The text also describes wall-less detectors in microdosimetry; dosimetry of low-energy X-rays; and the theory and general applicability of the gamma-ray theory of track effects to various systems. Dose equivalent determinations in neutron fields by means of moderator techniques; as well as developments in radiophotoluminescence dosimetry are also considered. Physicists, mathematicians, and archeologists will find the book useful.




Introduction to Radiological Physics and Radiation Dosimetry


Book Description

A straightforward presentation of the broad concepts underlying radiological physics and radiation dosimetry for the graduate-level student. Covers photon and neutron attenuation, radiation and charged particle equilibrium, interactions of photons and charged particles with matter, radiotherapy dosimetry, as well as photographic, calorimetric, chemical, and thermoluminescence dosimetry. Includes many new derivations, such as Kramers X-ray spectrum, as well as topics that have not been thoroughly analyzed in other texts, such as broad-beam attenuation and geometrics, and the reciprocity theorem. Subjects are layed out in a logical sequence, making the topics easier for students to follow. Supplemented with numerous diagrams and tables.










Radiation Protection and Dosimetry


Book Description

This book provides a comprehensive yet accessible overview of all relevant topics in the field of radiation protection (health physics). The text is organized to introduce the reader to basic principles of radiation emission and propagation, to review current knowledge and historical aspects of the biological effects of radiation, and to cover important operational topics such as radiation shielding and dosimetry. The author’s website contains materials for instructors including PowerPoint slides for lectures and worked-out solutions to end-of-chapter exercises. The book serves as an essential handbook for practicing health physics professionals.