Topics in Statistical Dependence
Author : Henry W. Block
Publisher : IMS
Page : 558 pages
File Size : 29,12 MB
Release : 1990
Category : Mathematical statistics
ISBN : 9780940600232
Author : Henry W. Block
Publisher : IMS
Page : 558 pages
File Size : 29,12 MB
Release : 1990
Category : Mathematical statistics
ISBN : 9780940600232
Author : Paul Doukhan
Publisher : Springer Science & Business Media
Page : 222 pages
File Size : 43,83 MB
Release : 2010-07-23
Category : Mathematics
ISBN : 3642141048
This account of recent works on weakly dependent, long memory and multifractal processes introduces new dependence measures for studying complex stochastic systems and includes other topics such as the dependence structure of max-stable processes.
Author : Daniel Peña
Publisher : John Wiley & Sons
Page : 562 pages
File Size : 10,55 MB
Release : 2021-05-04
Category : Mathematics
ISBN : 1119417384
Master advanced topics in the analysis of large, dynamically dependent datasets with this insightful resource Statistical Learning with Big Dependent Data delivers a comprehensive presentation of the statistical and machine learning methods useful for analyzing and forecasting large and dynamically dependent data sets. The book presents automatic procedures for modelling and forecasting large sets of time series data. Beginning with some visualization tools, the book discusses procedures and methods for finding outliers, clusters, and other types of heterogeneity in big dependent data. It then introduces various dimension reduction methods, including regularization and factor models such as regularized Lasso in the presence of dynamical dependence and dynamic factor models. The book also covers other forecasting procedures, including index models, partial least squares, boosting, and now-casting. It further presents machine-learning methods, including neural network, deep learning, classification and regression trees and random forests. Finally, procedures for modelling and forecasting spatio-temporal dependent data are also presented. Throughout the book, the advantages and disadvantages of the methods discussed are given. The book uses real-world examples to demonstrate applications, including use of many R packages. Finally, an R package associated with the book is available to assist readers in reproducing the analyses of examples and to facilitate real applications. Analysis of Big Dependent Data includes a wide variety of topics for modeling and understanding big dependent data, like: New ways to plot large sets of time series An automatic procedure to build univariate ARMA models for individual components of a large data set Powerful outlier detection procedures for large sets of related time series New methods for finding the number of clusters of time series and discrimination methods , including vector support machines, for time series Broad coverage of dynamic factor models including new representations and estimation methods for generalized dynamic factor models Discussion on the usefulness of lasso with time series and an evaluation of several machine learning procedure for forecasting large sets of time series Forecasting large sets of time series with exogenous variables, including discussions of index models, partial least squares, and boosting. Introduction of modern procedures for modeling and forecasting spatio-temporal data Perfect for PhD students and researchers in business, economics, engineering, and science: Statistical Learning with Big Dependent Data also belongs to the bookshelves of practitioners in these fields who hope to improve their understanding of statistical and machine learning methods for analyzing and forecasting big dependent data.
Author : Jérome Dedecker
Publisher : Springer Science & Business Media
Page : 326 pages
File Size : 40,95 MB
Release : 2007-07-29
Category : Mathematics
ISBN : 038769952X
This book develops Doukhan/Louhichi's 1999 idea to measure asymptotic independence of a random process. The authors, who helped develop this theory, propose examples of models fitting such conditions: stable Markov chains, dynamical systems or more complicated models, nonlinear, non-Markovian, and heteroskedastic models with infinite memory. Applications are still needed to develop a method of analysis for nonlinear times series, and this book provides a strong basis for additional studies.
Author : Harry Joe
Publisher : World Scientific
Page : 370 pages
File Size : 48,70 MB
Release : 2011
Category : Business & Economics
ISBN : 981429988X
1. Introduction : Dependence modeling / D. Kurowicka -- 2. Multivariate copulae / M. Fischer -- 3. Vines arise / R.M. Cooke, H. Joe and K. Aas -- 4. Sampling count variables with specified Pearson correlation : A comparison between a naive and a C-vine sampling approach / V. Erhardt and C. Czado -- 5. Micro correlations and tail dependence / R.M. Cooke, C. Kousky and H. Joe -- 6. The Copula information criterion and Its implications for the maximum pseudo-likelihood estimator / S. Gronneberg -- 7. Dependence comparisons of vine copulae with four or more variables / H. Joe -- 8. Tail dependence in vine copulae / H. Joe -- 9. Counting vines / O. Morales-Napoles -- 10. Regular vines : Generation algorithm and number of equivalence classes / H. Joe, R.M. Cooke and D. Kurowicka -- 11. Optimal truncation of vines / D. Kurowicka -- 12. Bayesian inference for D-vines : Estimation and model selection / C. Czado and A. Min -- 13. Analysis of Australian electricity loads using joint Bayesian inference of D-vines with autoregressive margins / C. Czado, F. Gartner and A. Min -- 14. Non-parametric Bayesian belief nets versus vines / A. Hanea -- 15. Modeling dependence between financial returns using pair-copula constructions / K. Aas and D. Berg -- 16. Dynamic D-vine model / A. Heinen and A. Valdesogo -- 17. Summary and future directions / D. Kurowicka
Author : Harry Joe
Publisher : CRC Press
Page : 422 pages
File Size : 36,96 MB
Release : 1997-05-01
Category : Mathematics
ISBN : 9780412073311
This book on multivariate models, statistical inference, and data analysis contains deep coverage of multivariate non-normal distributions for modeling of binary, count, ordinal, and extreme value response data. It is virtually self-contained, and includes many exercises and unsolved problems.
Author : Larry Wasserman
Publisher : Springer Science & Business Media
Page : 446 pages
File Size : 44,15 MB
Release : 2013-12-11
Category : Mathematics
ISBN : 0387217363
Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
Author : Vladas Pipiras
Publisher : Cambridge University Press
Page : 693 pages
File Size : 40,69 MB
Release : 2017-04-18
Category : Business & Economics
ISBN : 1107039460
A modern and rigorous introduction to long-range dependence and self-similarity, complemented by numerous more specialized up-to-date topics in this research area.
Author :
Publisher :
Page : 522 pages
File Size : 50,7 MB
Release : 2008
Category : Multivariate analysis
ISBN :
This e-book is the product of Project Euclid and its mission to advance scholarly communication in the field of theoretical and applied mathematics and statistics. Project Euclid was developed and deployed by the Cornell University Library and is jointly managed by Cornell and the Duke University Press.
Author : Victor de la Peña
Publisher : Springer Science & Business Media
Page : 405 pages
File Size : 27,33 MB
Release : 2012-12-06
Category : Mathematics
ISBN : 1461205379
A friendly and systematic introduction to the theory and applications. The book begins with the sums of independent random variables and vectors, with maximal inequalities and sharp estimates on moments, which are later used to develop and interpret decoupling inequalities. Decoupling is first introduced as it applies to randomly stopped processes and unbiased estimation. The authors then proceed with the theory of decoupling in full generality, paying special attention to comparison and interplay between martingale and decoupling theory, and to applications. These include limit theorems, moment and exponential inequalities for martingales and more general dependence structures, biostatistical implications, and moment convergence in Anscombe's theorem and Wald's equation for U--statistics. Addressed to researchers in probability and statistics and to graduates, the expositon is at the level of a second graduate probability course, with a good portion of the material fit for use in a first year course.