Topological Approach to the Chemistry of Conjugated Molecules


Book Description

"The second step is to determine constitution, Le. which atoms are bonded to which and by what types of bond. The result is ex pressed by a planar graph (or the corresponding connectivity mat rix) •••• In constitutional formulae, the atoms are represented by letters and the bonds by lines. They describe the topology of the molecule." VLADIMIR PRELOG, Nobel Lecture, December l2;h 1975. In the present notes we describe the topological approach to the che mistry of conjugated molecules using graph-theoretical concepts. Con jugatedstructures may be conveniently studied using planar and connec ted graphs because they reflect in the simple way the connectivity of their pi-centers. Connectivity is important topological property of a molecule which allows a conceptual qualitative understanding, via a non numerical analysis, of many chemical phenomena or at least that part of phenomenon which depends on topology. This would not be possible sole ly by means of numerical (molecular orbital) analysis.




Applications of Topological Methods in Molecular Chemistry


Book Description

This is the first edited volume that features two important frameworks, Hückel and quantum chemical topological analyses. The contributors, which include an array of academics of international distinction, describe recent applications of such topological methods to various fields and topics that provide the reader with the current state-of-the-art and give a flavour of the wide range of their potentialities.




Chemical Graph Theory


Book Description

New Edition! Completely Revised and Updated Chemical Graph Theory, 2nd Edition is a completely revised and updated edition of a highly regarded book that has been widely used since its publication in 1983. This unique book offers a basic introduction to the handling of molecular graphs - mathematical diagrams representing molecular structures. Using mathematics well within the vocabulary of most chemists, this volume elucidates the structural aspects of chemical graph theory: (1) the relationship between chemical and graph-theoretical terminology, elements of graph theory, and graph-theoretical matrices; (2) the topological aspects of the Hückel theory, resonance theory, and theories of aromaticity; and (3) the applications of chemical graph theory to structure-property and structure-activity relationships and to isomer enumeration. An extensive bibliography covering the most relevant advances in theory and applications is one of the book's most valuable features. This volume is intended to introduce the entire chemistry community to the applications of graph theory and will be of particular interest to theoretical organic and inorganic chemists, physical scientists, computational chemists, and those already involved in mathematical chemistry.




Chemical Graph Theory


Book Description

Building on the background of graph theory provided in the first volume of the series, presents a detailed examination of the role of graph theory in the study of chemical kinetics, reaction mechanisms, and quantitative structure-activity relations, in a manner useful to theoretical chemists. Among the topics are heterogeneous catalytic reactions, the classification and coding of chemical reaction mechanisms, the mechanist's description of chemical processes as it relates to aromaticity, and using operator networks to interpret evolutionary interrelations between chemical entities. Annotation copyright by Book News, Inc., Portland, OR




Analysis of Complex Networks


Book Description

Mathematical problems such as graph theory problems are of increasing importance for the analysis of modelling data in biomedical research such as in systems biology, neuronal network modelling etc. This book follows a new approach of including graph theory from a mathematical perspective with specific applications of graph theory in biomedical and computational sciences. The book is written by renowned experts in the field and offers valuable background information for a wide audience.




Chemical Graph Theory


Book Description

This volume presents the fundamentals of graph theory and then goes on to discuss specific chemical applications. Chapter 1 provides a historical setting for the current upsurge of interest in chemical graph theory. Chapter 2 gives a full background of the basic ideas and mathematical formalism of graph theory and includes such chemically relevant notions as connectedness, graph matrix representations, metric properties, symmetry and operations on graphs. This is followed by a discussion on chemical nomenclature and the trends in its rationalization by using graph theory, which has important implications for the storage and retrieval of chemical information. This volume also contains a detailed discussion of the relevance of graph-theoretical polynomials; it describes methodologies for the enumeration of isomers, incorporating the classical Polya method, as well as more recent approaches.




Handbook of Combinatorics


Book Description




Theory of Coronoid Hydrocarbons II


Book Description

The present monograph is a continuation of Cyvin SJ, Brunvoll J and Cyvin (1991c), a reference to be found in Bibliography. Naturally, the previous volume is cited frequently here. For the sake of brevity, it is referred to as "Volume I". References to different chapters, sections or paragraphs are given like Vol. 1-1, 1-1.2 or 1-1.2.2, respectively. Also tables and equations in "Volume I" are cited; the very last equation therein, for instance, is Vol. I-{9.9). The present text spans from references to organic syntheses or attempted organic syntheses - - to stringent mathematical theorems proved by graph-theoretical methods. Enumerations of coronoid systems is a substantial part of the work. Algebraic methods involving combinatorics and generating functions are employed on one hand, and computer programming on the other. The whole book is supposed to demonstrate a piece of mathematical chemistry, which can be characterized as lying on the "interfaces between mathematics, chemistry and computer science", a formulation used for the MATH/CHEM/COMP Conferences; d. Cyvin SJ, Brunvoll and Cyvin (1989d) in Bibliography. Financial support to BNC from the Norwegian Council for Science and the Humanities is gratefully acknowledged.




Organic Synthesis with Palladium Compounds


Book Description

Around 30 years ago the transition metal chemistry received great impulses. In the focus have been reactions of nickel and cobalt and herein especially their carbonyls. Also industrial processes have been developed. When the technical oxidation of ethylene with palladium chloride had been discovered, and a great number oflaboratory reactions, many groups have turned towards this subject. Apart from two important industrial processes - acetaldehyde and vinylacetate from ethylene - a great number of conversions and catalytic reactions with palladium compounds have been researched. Their mechanisms have been cleared up and have con tributed to a better understanding of the complex chemistry of palladium. Last but not least these reactions have also served for more understanding of organic transition metal compounds and catalyses in general. Numerous conventional reactions appear today in a different light. The effects of co-




Advances in Heterocyclic Chemistry


Book Description

Advances in Heterocyclic Chemistry