Topological Approaches to the Chemical Bond


Book Description

This graduate textbook provides comprehensive information on topological analysis in real space of the electronic structure. Application of the topological tools is becoming routine for understanding the outcome of quantum chemical calculations. This title thoroughly reviews a selection of currently available topological tools, their use and spectrum of applications and provides graduate students and researchers with information not easily obtained from the available textbooks. The book is accompanied by worked examples, exercises and solutions and is a great tool for any quantum chemistry or computational chemistry course at the graduate and advanced undergraduate levels.




Applications of Topological Methods in Molecular Chemistry


Book Description

This is the first edited volume that features two important frameworks, Hückel and quantum chemical topological analyses. The contributors, which include an array of academics of international distinction, describe recent applications of such topological methods to various fields and topics that provide the reader with the current state-of-the-art and give a flavour of the wide range of their potentialities.




Topological Approach to the Chemistry of Conjugated Molecules


Book Description

"The second step is to determine constitution, Le. which atoms are bonded to which and by what types of bond. The result is ex pressed by a planar graph (or the corresponding connectivity mat rix) •••• In constitutional formulae, the atoms are represented by letters and the bonds by lines. They describe the topology of the molecule." VLADIMIR PRELOG, Nobel Lecture, December l2;h 1975. In the present notes we describe the topological approach to the che mistry of conjugated molecules using graph-theoretical concepts. Con jugatedstructures may be conveniently studied using planar and connec ted graphs because they reflect in the simple way the connectivity of their pi-centers. Connectivity is important topological property of a molecule which allows a conceptual qualitative understanding, via a non numerical analysis, of many chemical phenomena or at least that part of phenomenon which depends on topology. This would not be possible sole ly by means of numerical (molecular orbital) analysis.




The Stability of Minerals


Book Description

30% discount for members of The Mineralogical Society of Britain and Ireland This volume addresses the fundamental factors that underlie our understanding of mineral behaviour and crystal chemistry - a timely topic given current advances in research into the complex behaviour of solids and supercomputing.




Topology in Chemistry


Book Description

This volume addresses a number of topological themes of direct relevance to chemists. Topological concepts are now regularly applied in wide areas of chemistry including molecular engineering and design, chemical toxicology, the study of molecular shape, crystal and surface structures, chemical bonding, macromolecular species such as polymers and DNA, and environmental chemistry. Currently, the design and synthesis of new drugs and agrochemicals are of especial importance. The book's prime focus is on the role played by topological indices in the description and characterisation of molecular species. The Wiener index along with a variety of other major topological indices, are discussed with particular reference to the powerful and much used connectivity indices. In this book an international team of leading experts review their respective fields and present their findings.The considerable benefits offered by topological indices in the investigation of chemical problems in science, medicine, and industry are highlighted. The volume records proceedings of the Harry Wiener Memorial Conference on the Role of Topology in Chemistry, held at the University of Georgia in March 2001, and serves as a fitting tribute to the chemical contributions of the late Harry Wiener. - Focuses on the role played by topological indices in the description and characterisation of molecular species - Records the proceedings of the Harry Weiner Memorial Conference on the Role of Topology in Chemistry, held at the University of Georgia in March 2001 - Along with a variety of other major topological indices, the Wiener index is discussed with particular reference to the powerful and much-used connectivity indices




Electron Density and Chemical Bonding II


Book Description

T. Koritsanszky, A. Volkov, M. Chodkiewicz: New Directions in Pseudoatom-Based X-Ray Charge Density Analysis.- B. Dittrich, D. Jayatilaka: Reliable Measurements of Dipole Moments from Single-Crystal Diffraction Data and Assessment of an In-Crystal Enhancement.- B. Engels, Th. C. Schmidt, C. Gatti, T. Schirmeister, R.F. Fink: Challenging Problems in Charge Density Determination: Polar Bonds and Influence of the Environment.- S. Fux, M. Reiher: Electron Density in Quantum Theory.- K. Meindl, J.Henn: Residual Density Analysis.- C. Gatti: The Source Function Descriptor as a Tool to Extract Chemical Information from Theoretical and Experimental Electron Densities.




Recent Advances in Complex Functional Materials


Book Description

In this book we explore new approaches to understanding the physical and chemical properties of emergent complex functional materials, revealing a close relationship between their structures and properties at the molecular level. The primary focus of this book is on the ability to synthesize materials with a controlled chemical composition, a crystallographic structure, and a well-defined morphology. Special attention is also given to the interplay of theory, simulation and experimental results, in order to interconnect theoretical knowledge and experimental approaches, which can reveal new scientific and technological directions in several fields, expanding the versatility to yield a variety of new complex materials with desirable applications and functions. Some of the challenges and opportunities in this field are also discussed, targeting the development of new emergent complex functional materials with tailored properties to solve problems related to renewable energy, health, and environmental sustainability. A more fundamental understanding of the physical and chemical properties of new emergent complex functional materials is essential to achieving more substantial progress in a number of technological fields. With this goal in mind, the editors invited acknowledged specialists to contribute chapters covering a broad range of disciplines.




Electron Density and Bonding in Crystals


Book Description

Electron Density and Bonding in Crystals: Principles, Theory and X-Ray Diffraction Experiments in Solid State Physics and Chemistry provides a comprehensive, unified account of the use of diffraction techniques to determine the distribution of electrons in crystals. The book discusses theoretical and practical techniques, the application of electron density studies to chemical bonding, and the determination of the physical properties of condensed matter. The book features the authors' own key contributions to the subject as well a thorough, critical summary of the extensive literature on electron density and bonding. Logically organized, coverage ranges from the theoretical and experimental basis of electron density determination to its impact on investigations of the nature of the chemical bond and its uses in determining electromagnetic and optical properties of crystals. The main text is supplemented by appendices that provide clear, concise guidance on aspects such as systems of units, quantum theory of atomic vibrations, atomic orbitals, and creation and annihilation operators. The result is a valuable compendium of modern knowledge on electron density distributions, making this reference a standard for crystallographers, condensed matter physicists, theoretical chemists, and materials scientists.




The Chemical Bond


Book Description

This is the perfect complement to "Chemical Bonding - Across the Periodic Table" by the same editors, who are two of the top scientists working on this topic, each with extensive experience and important connections within the community. The resulting book is a unique overview of the different approaches used for describing a chemical bond, including molecular-orbital based, valence-bond based, ELF, AIM and density-functional based methods. It takes into account the many developments that have taken place in the field over the past few decades due to the rapid advances in quantum chemical models and faster computers.




The Chemical Bond I


Book Description

The series Structure and Bonding publishes critical reviews on topics of research concerned with chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed. Review articles for the individual volumes are invited by the volume editors