Topological Disorder in Condensed Matter


Book Description

This volume contains papers presented at the Fifth Taniguchi Symposium on the Theory of Condensed Matter, which was held between 2-5 November, 1982, at Shimoda, Japan. The topic of the Symposium was "Topological Disorder in Condensed Matter. " The objective of the Taniguchi Symposium is to encourage activity in those fields of research not in the limelight at the moment but regarded as very promising, such as our theme. Topological disorder refers to the dis order in the positions and connectivities of atoms in amorphous solids and liquids. The development of the physiCS of topologically disorderd systems, though extremely important fundamentally and for application purposes, falls far behind compared to that of other kinds of disorderd systems because the structure characterization of topologically disordered systems is still at a rather primitive stage. The structure characterization is the key to com prehensive understanding of physical properties of any material. Recently, several new attempts at structural analyses have been reported. Encouraged by this fact, our motivation in organizing the symposium was to investigate the possibilities of theoretical approaches to open a breakthrough in the present research situation on this subject. A rough sketch of the problem is made in the Introduction to give the readers a general outline of the subject. Part I is devoted to several at tempts to synthesize and characterize topological disorder more or less by analytical means.













Topology in Condensed Matter


Book Description

This book reports new results in condensed matter physics for which topological methods and ideas are important. It considers, on the one hand, recently discovered systems such as carbon nanocrystals and, on the other hand, new topological methods used to describe more traditional systems such as the Fermi surfaces of normal metals, liquid crystals and quasicrystals. The authors of the book are renowned specialists in their fields and present the results of ongoing research, some of it obtained only very recently and not yet published in monograph form.




Topological Aspects of Condensed Matter Physics


Book Description

This book contains lecture notes by world experts on one of the most rapidly growing fields of research in physics. Topological quantum phenomena are being uncovered at unprecedented rates in novel material systems. The consequences are far reaching, from the possibility of carrying currents and performing computations without dissipation of energy, to the possibility of realizing platforms for topological quantum computation.The pedagogical lectures contained in this book are an excellent introduction to this blooming field. The lecture notes are intended for graduate students or advanced undergraduate students in physics and mathematics who want to immerse in this exciting XXI century physics topic. This Les Houches Summer School presents an overview of this field, along with a sense of its origins and its placement on the map of fundamental physics advancements. The School comprised a set of basic lectures (part 1) aimed at a pedagogical introduction of the fundamental concepts, which was accompanied by more advanced lectures (part 2) covering individual topics at the forefront of today's research in condensed-matter physics.




Disorder in Condensed Matter Physics


Book Description

This collection of articles is based on papers presented at a Symposium held in Oxford to mark the 60th birthday of Roger Elliot, a leading figure in theoretical condensed matter physics.




Topological Phases of Matter


Book Description

This important graduate level text unites the physical mechanisms behind the phenomena of topological matter within a theoretical framework.




Topology In Condensed Matter: An Introduction


Book Description

This text serves as a pedagogical introduction to the theoretical concepts on application of topology in condensed matter systems. It covers an introduction to basic concepts of topology, emphasizes the relation of geometric concepts such as the Berry phase to topology, having in mind applications in condensed matter. In addition to describing two basic systems such as topological insulators and topological superconductors, it also reviews topological spin systems and photonic systems. It also describes the use of quantum information concepts in the context of topological phases and phase transitions, and the effect of non-equilibrium perturbations on topological systems.This book provides a comprehensive introduction to topological insulators, topological superconductors and topological semimetals. It includes all the mathematical background required for the subject. There are very few books with such a coverage in the market.