Topological Field Theory, Primitive Forms and Related Topics


Book Description

As the interaction of mathematics and theoretical physics continues to intensify, the theories developed in mathematics are being applied to physics, and conversely. This book centers around the theory of primitive forms which currently plays an active and key role in topological field theory (theoretical physics), but was originally developed as a mathematical notion to define a "good period mapping" for a family of analytic structures. The invited papers in this volume are expository in nature by participants of the Taniguchi Symposium on "Topological Field Theory, Primitive Forms and Related Topics" and the RIMS Symposium bearing the same title, both held in Kyoto. The papers reflect the broad research of some of the world's leading mathematical physicists, and should serve as an excellent resource for researchers as well as graduate students of both disciplines.




Topological Field Theory, Primitive Forms and Related Topics


Book Description

As the interaction of mathematics and theoretical physics continues to intensify, the theories developed in mathematics are being applied to physics, and conversely. This book centers around the theory of primitive forms which currently plays an active and key role in topological field theory (theoretical physics), but was originally developed as a mathematical notion to define a "good period mapping" for a family of analytic structures. The invited papers in this volume are expository in nature by participants of the Taniguchi Symposium on "Topological Field Theory, Primitive Forms and Related Topics" and the RIMS Symposium bearing the same title, both held in Kyoto. The papers reflect the broad research of some of the world's leading mathematical physicists, and should serve as an excellent resource for researchers as well as graduate students of both disciplines.




String-Math 2011


Book Description

The nature of interactions between mathematicians and physicists has been thoroughly transformed in recent years. String theory and quantum field theory have contributed a series of profound ideas that gave rise to entirely new mathematical fields and revitalized older ones. The influence flows in both directions, with mathematical techniques and ideas contributing crucially to major advances in string theory. A large and rapidly growing number of both mathematicians and physicists are working at the string-theoretic interface between the two academic fields. The String-Math conference series aims to bring together leading mathematicians and mathematically minded physicists working in this interface. This volume contains the proceedings of the inaugural conference in this series, String-Math 2011, which was held June 6-11, 2011, at the University of Pennsylvania.




Vertex Operator Algebras and Related Areas


Book Description

Vertex operator algebras were introduced to mathematics in the work of Richard Borcherds, Igor Frenkel, James Lepowsky and Arne Meurman as a mathematically rigorous formulation of chiral algebras of two-dimensional conformal field theory. The aim was to use vertex operator algebras to explain and prove the remarkable Monstrous Moonshine conjectures in group theory. The theory of vertex operator algebras has now grown into a major research area in mathematics. These proceedings contain expository lectures and research papers presented during the international conference on Vertex Operator Algebras and Related Areas, held at Illinois State University in Normal, IL, from July 7 to July 11, 2008. The main aspects of this conference were connections and interactions of vertex operator algebras with the following areas: conformal field theories, quantum field theories, Hopf algebra, infinite dimensional Lie algebras, and modular forms. This book will be useful for researchers as well as for graduate students in mathematics and physics. Its purpose is not only to give an up-to-date overview of the fields covered by the conference but also to stimulate new directions and discoveries by experts in the areas.




D-Modules, Perverse Sheaves, and Representation Theory


Book Description

D-modules continues to be an active area of stimulating research in such mathematical areas as algebraic, analysis, differential equations, and representation theory. Key to D-modules, Perverse Sheaves, and Representation Theory is the authors' essential algebraic-analytic approach to the theory, which connects D-modules to representation theory and other areas of mathematics. To further aid the reader, and to make the work as self-contained as possible, appendices are provided as background for the theory of derived categories and algebraic varieties. The book is intended to serve graduate students in a classroom setting and as self-study for researchers in algebraic geometry, representation theory.




Symplectic, Poisson, and Noncommutative Geometry


Book Description

This volume contains seven chapters based on lectures given by invited speakers at two May 2010 workshops held at the Mathematical Sciences Research Institute.




Handbook of Geometry and Topology of Singularities III


Book Description

This is the third volume of the Handbook of Geometry and Topology of Singularities, a series which aims to provide an accessible account of the state of the art of the subject, its frontiers, and its interactions with other areas of research. This volume consists of ten chapters which provide an in-depth and reader-friendly survey of various important aspects of singularity theory. Some of these complement topics previously explored in volumes I and II, such as, for instance, Zariski’s equisingularity, the interplay between isolated complex surface singularities and 3-manifold theory, stratified Morse theory, constructible sheaves, the topology of the non-critical levels of holomorphic functions, and intersection cohomology. Other chapters bring in new subjects, such as the Thom–Mather theory for maps, characteristic classes for singular varieties, mixed Hodge structures, residues in complex analytic varieties, nearby and vanishing cycles, and more. Singularities are ubiquitous in mathematics and science in general. Singularity theory interacts energetically with the rest of mathematics, acting as a crucible where different types of mathematical problems interact, surprising connections are born and simple questions lead to ideas which resonate in other parts of the subject, and in other subjects. Authored by world experts, the various contributions deal with both classical material and modern developments, covering a wide range of topics which are linked to each other in fundamental ways. The book is addressed to graduate students and newcomers to the theory, as well as to specialists who can use it as a guidebook.




Lie Theory and Its Applications in Physics


Book Description

Traditionally, Lie theory is a tool to build mathematical models for physical systems. Recently, the trend is towards geometrization of the mathematical description of physical systems and objects. A geometric approach to a system yields in general some notion of symmetry which is very helpful in understanding its structure. Geometrization and symmetries are meant in their widest sense, i.e., representation theory, algebraic geometry, infinite-dimensional Lie algebras and groups, superalgebras and supergroups, groups and quantum groups, noncommutative geometry, symmetries of linear and nonlinear PDE, special functions, and others. Furthermore, the necessary tools from functional analysis and number theory are included. This is a big interdisciplinary and interrelated field. Samples of these fresh trends are presented in this volume, based on contributions from the Workshop "Lie Theory and Its Applications in Physics" held near Varna (Bulgaria) in June 2013. This book is suitable for a broad audience of mathematicians, mathematical physicists, and theoretical physicists and researchers in the field of Lie Theory.




Number Fields and Function Fields – Two Parallel Worlds


Book Description

Invited articles by leading researchers explore various aspects of the parallel worlds of function fields and number fields Topics range from Arakelov geometry, the search for a theory of varieties over the field with one element, via Eisenstein series to Drinfeld modules, and t-motives Aimed at graduate students, mathematicians, and researchers interested in geometry and arithmetic and their connections




Lectures on Geometry


Book Description

This volume contains a collection of papers based on lectures delivered by distinguished mathematicians at Clay Mathematics Institute events over the past few years. It is intended to be the first in an occasional series of volumes of CMI lectures. Although not explicitly linked, the topics in this inaugural volume have a common flavour and a common appeal to all who are interested in recent developments in geometry. They are intended to be accessible to all who work in this general area, regardless of their own particular research interests.