Topological Groups and Related Structures, An Introduction to Topological Algebra.


Book Description

Algebraandtopology,thetwofundamentaldomainsofmathematics,playcomplem- tary roles. Topology studies continuity and convergence and provides a general framework to study the concept of a limit. Much of topology is devoted to handling in?nite sets and in?nity itself; the methods developed are qualitative and, in a certain sense, irrational. - gebra studies all kinds of operations and provides a basis for algorithms and calculations. Very often, the methods here are ?nitistic in nature. Because of this difference in nature, algebra and topology have a strong tendency to develop independently, not in direct contact with each other. However, in applications, in higher level domains of mathematics, such as functional analysis, dynamical systems, representation theory, and others, topology and algebra come in contact most naturally. Many of the most important objects of mathematics represent a blend of algebraic and of topologicalstructures. Topologicalfunctionspacesandlineartopologicalspacesingeneral, topological groups and topological ?elds, transformation groups, topological lattices are objects of this kind. Very often an algebraic structure and a topology come naturally together; this is the case when they are both determined by the nature of the elements of the set considered (a group of transformations is a typical example). The rules that describe the relationship between a topology and an algebraic operation are almost always transparentandnatural—theoperationhastobecontinuous,jointlyorseparately.




Topological Groups and Related Structures


Book Description

This book presents a large amount of material, both classic and recent (on occasion, unpublished) about the relations of Algebra and Topology. It therefore belongs to the area called Topological Algebra. More specifically, the objects of the study are subtle and sometimes unexpected phenomena that occur when the continuity meets and properly feeds an algebraic operation. Such a combination gives rise to many classic structures, including topological groups and semigroups, paratopological groups, etc. Special emphasis is given to tracing the influence of compactness and its generalizations on the properties of an algebraic operation, causing on occasion the automatic continuity of the operation. The main scope of the book, however, is outside of the locally compact structures, thus distinguishing the monograph from a series of more traditional textbooks.The book is unique in that it presents very important material, dispersed in hundreds of research articles, not covered by any monograph in existence. The reader is gently introduced to an amazing world at the interface of Algebra, Topology, and Set Theory. He/she will find that the way to the frontier of the knowledge is quite short -- almost every section of the book contains several intriguing open problems whose solutions can contribute significantly to the area.




Introduction to Topological Groups


Book Description

Concise treatment covers semitopological groups, locally compact groups, Harr measure, and duality theory and some of its applications. The volume concludes with a chapter that introduces Banach algebras. 1966 edition.




Coarse Geometry of Topological Groups


Book Description

Provides a general framework for doing geometric group theory for non-locally-compact topological groups arising in mathematical practice.




Topological Uniform Structures


Book Description

Exceptionally smooth, clear, detailed examination of uniform spaces, topological groups, topological vector spaces, topological algebras and abstract harmonic analysis. Also, topological vector-valued measure spaces as well as numerous problems and examples. For advanced undergraduates and beginning graduate students. Bibliography. Index.




Ultrafilters and Topologies on Groups


Book Description

This book presents the relationship between ultrafilters and topologies on groups. It shows how ultrafilters are used in constructing topologies on groups with extremal properties and how topologies on groups serve in deriving algebraic results about ultrafilters. The contents of the book fall naturally into three parts. The first, comprising Chapters 1 through 5, introduces to topological groups and ultrafilters insofar as the semigroup operation on ultrafilters is not required. Constructions of some important topological groups are given. In particular, that of an extremally disconnected topological group based on a Ramsey ultrafilter. Also one shows that every infinite group admits a nondiscrete zero-dimensional topology in which all translations and the inversion are continuous. In the second part, Chapters 6 through 9, the Stone-Cêch compactification βG of a discrete group G is studied. For this, a special technique based on the concepts of a local left group and a local homomorphism is developed. One proves that if G is a countable torsion free group, then βG contains no nontrivial finite groups. Also the ideal structure of βG is investigated. In particular, one shows that for every infinite Abelian group G, βG contains 22G minimal right ideals. In the third part, using the semigroup βG, almost maximal topological and left topological groups are constructed and their ultrafilter semigroups are examined. Projectives in the category of finite semigroups are characterized. Also one shows that every infinite Abelian group with finitely many elements of order 2 is absolutely ω-resolvable, and consequently, can be partitioned into ω subsets such that every coset modulo infinite subgroup meets each subset of the partition. The book concludes with a list of open problems in the field. Some familiarity with set theory, algebra and topology is presupposed. But in general, the book is almost self-contained. It is aimed at graduate students and researchers working in topological algebra and adjacent areas.




A Course in Abstract Harmonic Analysis


Book Description

A Course in Abstract Harmonic Analysis is an introduction to that part of analysis on locally compact groups that can be done with minimal assumptions on the nature of the group. As a generalization of classical Fourier analysis, this abstract theory creates a foundation for a great deal of modern analysis, and it contains a number of elegant resul




Ordered Groups and Topology


Book Description

This book deals with the connections between topology and ordered groups. It begins with a self-contained introduction to orderable groups and from there explores the interactions between orderability and objects in low-dimensional topology, such as knot theory, braid groups, and 3-manifolds, as well as groups of homeomorphisms and other topological structures. The book also addresses recent applications of orderability in the studies of codimension-one foliations and Heegaard-Floer homology. The use of topological methods in proving algebraic results is another feature of the book. The book was written to serve both as a textbook for graduate students, containing many exercises, and as a reference for researchers in topology, algebra, and dynamical systems. A basic background in group theory and topology is the only prerequisite for the reader.




Convergence Structures and Applications to Functional Analysis


Book Description

This text offers a rigorous introduction into the theory and methods of convergence spaces and gives concrete applications to the problems of functional analysis. While there are a few books dealing with convergence spaces and a great many on functional analysis, there are none with this particular focus. The book demonstrates the applicability of convergence structures to functional analysis. Highlighted here is the role of continuous convergence, a convergence structure particularly appropriate to function spaces. It is shown to provide an excellent dual structure for both topological groups and topological vector spaces. Readers will find the text rich in examples. Of interest, as well, are the many filter and ultrafilter proofs which often provide a fresh perspective on a well-known result. Audience: This text will be of interest to researchers in functional analysis, analysis and topology as well as anyone already working with convergence spaces. It is appropriate for senior undergraduate or graduate level students with some background in analysis and topology.




Topological Transformation Groups


Book Description

An advanced monograph on the subject of topological transformation groups, this volume summarizes important research conducted during a period of lively activity in this area of mathematics. The book is of particular note because it represents the culmination of research by authors Deane Montgomery and Leo Zippin, undertaken in collaboration with Andrew Gleason of Harvard University, that led to their solution of a well-known mathematical conjecture, Hilbert's Fifth Problem. The treatment begins with an examination of topological spaces and groups and proceeds to locally compact groups and groups with no small subgroups. Subsequent chapters address approximation by Lie groups and transformation groups, concluding with an exploration of compact transformation groups.