Nontraditional methods in mathematical hydrodynamics


Book Description

This book discusses a number of qualitative features of mathematical models of incompressible fluids. Three basic systems of hydrodynamical equations are considered: the system of stationary Euler equations for flows of an ideal (nonviscous) fluid, stationary Navier-Stokes equations for flows of a viscous fluid, and Reynolds equations for the mean velocity field, pressure, and pair one-point velocity correlations of turbulent flows. The analysis concerns algebraic or geometric properties of vector fields generated by these equations, such as the general arrangement of streamlines, the character and distribution of singular points, conditions for their absence or appearance, and so on. Troshkin carries out a systematic application of the analysis to investigate conditions for unique solvability of a number of problems for these quasilinear systems. Containing many examples of particular phenomena illustrating the general ideas covered, this book will be of interest to researchers and graduate students working in mathematical physics and hydrodynamics.










Functional Operators (AM-21), Volume 1


Book Description

Geometry of orthogonal spaces.







Complex Analysis


Book Description

Text for advanced undergraduates and graduate students provides geometrical insights by covering angles, basic complex analysis, and interactions with plane topology while focusing on concepts of angle and winding numbers. 1979 edition.




Topological Methods in the Theory of Functions of a Complex Variable


Book Description

A classic treatment of topological methods in the theory of functions of a complex variable from the acclaimed Annals of Mathematics Studies series Princeton University Press is proud to have published the Annals of Mathematics Studies since 1940. One of the oldest and most respected series in science publishing, it has included many of the most important and influential mathematical works of the twentieth century. The series continues this tradition as Princeton University Press publishes the major works of the twenty-first century. To mark the continued success of the series, all books are available in paperback and as ebooks.







Modern Methods in Complex Analysis (AM-137), Volume 137


Book Description

The fifteen articles composing this volume focus on recent developments in complex analysis. Written by well-known researchers in complex analysis and related fields, they cover a wide spectrum of research using the methods of partial differential equations as well as differential and algebraic geometry. The topics include invariants of manifolds, the complex Neumann problem, complex dynamics, Ricci flows, the Abel-Radon transforms, the action of the Ricci curvature operator, locally symmetric manifolds, the maximum principle, very ampleness criterion, integrability of elliptic systems, and contact geometry. Among the contributions are survey articles, which are especially suitable for readers looking for a comprehensive, well-presented introduction to the most recent important developments in the field. The contributors are R. Bott, M. Christ, J. P. D'Angelo, P. Eyssidieux, C. Fefferman, J. E. Fornaess, H. Grauert, R. S. Hamilton, G. M. Henkin, N. Mok, A. M. Nadel, L. Nirenberg, N. Sibony, Y.-T. Siu, F. Treves, and S. M. Webster.