Topological Vector Spaces, Distributions and Kernels


Book Description

Extending beyond the boundaries of Hilbert and Banach space theory, this text focuses on key aspects of functional analysis, particularly in regard to solving partial differential equations. 1967 edition.




Topological Vector Spaces, Distributions and Kernels


Book Description

Topological Vector Spaces, Distributions and Kernels discusses partial differential equations involving spaces of functions and space distributions. The book reviews the definitions of a vector space, of a topological space, and of the completion of a topological vector space. The text gives examples of Frechet spaces, Normable spaces, Banach spaces, or Hilbert spaces. The theory of Hilbert space is similar to finite dimensional Euclidean spaces in which they are complete and carry an inner product that can determine their properties. The text also explains the Hahn-Banach theorem, as well as the applications of the Banach-Steinhaus theorem and the Hilbert spaces. The book discusses topologies compatible with a duality, the theorem of Mackey, and reflexivity. The text describes nuclear spaces, the Kernels theorem and the nuclear operators in Hilbert spaces. Kernels and topological tensor products theory can be applied to linear partial differential equations where kernels, in this connection, as inverses (or as approximations of inverses), of differential operators. The book is suitable for vector mathematicians, for students in advanced mathematics and physics.




Topological Vector Spaces and Distributions


Book Description

Precise exposition provides an excellent summary of the modern theory of locally convex spaces and develops the theory of distributions in terms of convolutions, tensor products, and Fourier transforms. 1966 edition.







Modern Methods in Topological Vector Spaces


Book Description

"Designed for a one-year course in topological vector spaces, this text is geared toward beginning graduate students of mathematics. Topics include Banach space, open mapping and closed graph theorems, local convexity, duality, equicontinuity, operators,inductive limits, and compactness and barrelled spaces. Extensive tables cover theorems and counterexamples. Rich problem sections throughout the book. 1978 edition"--




Basic Linear Partial Differential Equations


Book Description

Basic Linear Partial Differential Equations










Applied Nonlinear Analysis


Book Description

Nonlinear analysis, formerly a subsidiary of linear analysis, has advanced as an individual discipline, with its own methods and applications. Moreover, students can now approach this highly active field without the preliminaries of linear analysis. As this text demonstrates, the concepts of nonlinear analysis are simple, their proofs direct, and their applications clear. No prerequisites are necessary beyond the elementary theory of Hilbert spaces; indeed, many of the most interesting results lie in Euclidean spaces. In order to remain at an introductory level, this volume refrains from delving into technical difficulties and sophisticated results not in current use. Applications are explained as soon as possible, and theoretical aspects are geared toward practical use. Topics range from very smooth functions to nonsmooth ones, from convex variational problems to nonconvex ones, and from economics to mechanics. Background notes, comments, bibliography, and indexes supplement the text.




General Topology


Book Description

Comprehensive text for beginning graduate-level students and professionals. "The clarity of the author's thought and the carefulness of his exposition make reading this book a pleasure." — Bulletin of the American Mathematical Society. 1955 edition.