Classical and Modern Methods in Summability


Book Description

Summability is a mathematical topic with a long tradition and many applications in, for example, function theory, number theory, and stochastics. It was originally based on classical analytical methods, but was strongly influenced by modern functional analytical methods during the last seven decades. The present book aims to introduce the reader to the wide field of summability and its applications, and provides an overview of the most important classical and modern methods used. Part I contains a short general introduction to summability, the basic classical theory concerning mainly inclusion theorems and theorems of the Silverman-Toeplitz type, a presentation of the most important classes of summability methods, Tauberian theorems, and applications of matrix methods. The proofs in Part I are exclusively done by applying classical analytical methods. Part II is concerned with modern functional analytical methods in summability, and contains the essential functional analytical basis required in later parts of the book, topologization of sequence spaces as K- and KF-spaces, domains of matrix methods as FK-spaces and their topological structure. In this part the proofs are of functional analytical nature only. Part III of the present book deals with topics in summability and topological sequence spaces which require the combination of classical and modern methods. It covers investigations of the constistency of matrix methods and of the bounded domain of matrix methods via Saks space theory, and the presentation of some aspects in topological sequence spaces. Lecturers, graduate students, and researchers working in summability and related topics will find this book a useful introduction and reference work.




Topological Library: Spectral sequences in topology


Book Description

The final volume of the three-volume edition, this book features classical papers on algebraic and differential topology published in 1950-60s. The original methods and constructions from these works are properly documented for the first time in this book. No existing book covers the beautiful ensemble of methods created in topology starting from approximately 1950. That is, from Serre's celebrated "singular homologies of fiber spaces




Topological Groups and the Pontryagin-van Kampen Duality


Book Description

This book provides an introduction to topological groups and the structure theory of locally compact abelian groups, with a special emphasis on Pontryagin-van Kampen duality, including a completely self-contained elementary proof of the duality theorem. Further related topics and applications are treated in separate chapters and in the appendix.




Elementary Topology


Book Description

This text contains a detailed introduction to general topology and an introduction to algebraic topology via its most classical and elementary segment. Proofs of theorems are separated from their formulations and are gathered at the end of each chapter, making this book appear like a problem book and also giving it appeal to the expert as a handbook. The book includes about 1,000 exercises.




Descriptive Topology and Functional Analysis II


Book Description

This book is the result of a meeting on Topology and Functional Analysis, and is dedicated to Professor Manuel López-Pellicer's mathematical research. Covering topics in descriptive topology and functional analysis, including topological groups and Banach space theory, fuzzy topology, differentiability and renorming, tensor products of Banach spaces and aspects of Cp-theory, this volume is particularly useful to young researchers wanting to learn about the latest developments in these areas.




Recent Progress in General Topology II


Book Description

The book presents surveys describing recent developments in most of the primary subfields of General Topology and its applications to Algebra and Analysis during the last decade. It follows freely the previous edition (North Holland, 1992), Open Problems in Topology (North Holland, 1990) and Handbook of Set-Theoretic Topology (North Holland, 1984). The book was prepared in connection with the Prague Topological Symposium, held in 2001. During the last 10 years the focus in General Topology changed and therefore the selection of topics differs slightly from those chosen in 1992. The following areas experienced significant developments: Topological Groups, Function Spaces, Dimension Theory, Hyperspaces, Selections, Geometric Topology (including Infinite-Dimensional Topology and the Geometry of Banach Spaces). Of course, not every important topic could be included in this book. Except surveys, the book contains several historical essays written by such eminent topologists as: R.D. Anderson, W.W. Comfort, M. Henriksen, S. Mardeŝić, J. Nagata, M.E. Rudin, J.M. Smirnov (several reminiscences of L. Vietoris are added). In addition to extensive author and subject indexes, a list of all problems and questions posed in this book are added. List of all authors of surveys: A. Arhangel'skii, J. Baker and K. Kunen, H. Bennett and D. Lutzer, J. Dijkstra and J. van Mill, A. Dow, E. Glasner, G. Godefroy, G. Gruenhage, N. Hindman and D. Strauss, L. Hola and J. Pelant, K. Kawamura, H.-P. Kuenzi, W. Marciszewski, K. Martin and M. Mislove and M. Reed, R. Pol and H. Torunczyk, D. Repovs and P. Semenov, D. Shakhmatov, S. Solecki, M. Tkachenko.




Topology of Lie Groups, I and II


Book Description




Topological Library - Part 3: Spectral Sequences In Topology


Book Description

The final volume of the three-volume edition, this book features classical papers on algebraic and differential topology published in the 1950s-1960s. The partition of these papers among the volumes is rather conditional. The original methods and constructions from these works are properly documented for the first time in this book. No existing book covers the beautiful ensemble of methods created in topology starting from approximately 1950. That is, from Serre's celebrated “singular homologies of fiber spaces.”




High-dimensional Manifold Topology - Proceedings Of The School


Book Description

Contents: A Foliated Squeezing Theorem for Geometric Modules (A Bartels et al.)Equivariant Cellular Homology and Its Applications (B Chorny)Remarks on a Conjecture of Gromov and Lawson (W Dwyer et al.)Chain Complex Invariants for Group Actions (L E Jones)The Ore Condition, Affiliated Operators, and the Lamplighter Group (P A Linnell et al.)The Surgery Exact Sequence Revisited (E K Pedersen)K-theory for Proper Smooth Actions of Totally Disconnected Groups (J Sauer)Geometric Chain Homotopy Equivalences between Novikov Complexes (D Schütz)and other papers Readership: Graduate students and researchers in geometry and topology. Keywords:High-Dimensional Manifold Topology;Operator Algebras;K-Theory;L-Theory;Foliated Control Theory