Topology Conference


Book Description




Lectures on Three-Manifold Topology


Book Description

This manuscript is a detailed presentation of the ten lectures given by the author at the NSF Regional Conference on Three-Manifold Topology, held October 1977, at Virginia Polytechnic Institute and State University. The purpose of the conference was to present the current state of affairs in three-manifold topology and to integrate the classical results with the many recent advances and new directions.




Tennessee Topology Conference


Book Description

Contents:Endomorphism Properties of Algebraic Structures (M E Adams et al.)Alternate Methods for Generating Interaction Semigroups (G R Barnes et al.)Separate vs. Joint Continuity: A Tale of Four Topologies — A Summary (M Henriksen)Cardinal Functions on Continuous Images (I Juhász)A Survey of Topological Nearrings and Nearrings of Continuous Functions (K D Magill, Jr.)Ordered Quotients and the Semi-Lattice of Ordered Compactifications (D D Mooney & T A Richmond)Various Topologies on Trees (P J Nyikos)Backward Shifts on Banach Spaces C(X), II (M Rajagopalan & K Sundaresan)and other papers Readership: Mathematicians.




Geometry and Topology


Book Description

This book discusses topics ranging from traditional areas of topology, such as knot theory and the topology of manifolds, to areas such as differential and algebraic geometry. It also discusses other topics such as three-manifolds, group actions, and algebraic varieties.




Topology and Geometry of Manifolds


Book Description

Since 1961, the Georgia Topology Conference has been held every eight years to discuss the newest developments in topology. The goals of the conference are to disseminate new and important results and to encourage interaction among topologists who are in different stages of their careers. Invited speakers are encouraged to aim their talks to a broad audience, and several talks are organized to introduce graduate students to topics of current interest. Each conference results in high-quality surveys, new research, and lists of unsolved problems, some of which are then formally published. Continuing in this 40-year tradition, the AMS presents this volume of articles and problem lists from the 2001 conference. Topics covered include symplectic and contact topology, foliations and laminations, and invariants of manifolds and knots. Articles of particular interest include John Etnyre's, ``Introductory Lectures on Contact Geometry'', which is a beautiful expository paper that explains the background and setting for many of the other papers. This is an excellent introduction to the subject for graduate students in neighboring fields. Etnyre and Lenhard Ng's, ``Problems in Low-Dimensional Contact Topology'' and Danny Calegari's extensive paper,``Problems in Foliations and Laminations of 3-Manifolds'' are carefully selected problems in keeping with the tradition of the conference. They were compiled by Etnyre and Ng and by Calegari with the input of many who were present. This book provides material of current interest to graduate students and research mathematicians interested in the geometry and topology of manifolds.




Geometry and Topology


Book Description

This book discusses topics ranging from traditional areas of topology, such as knot theory and the topology of manifolds, to areas such as differential and algebraic geometry. It also discusses other topics such as three-manifolds, group actions, and algebraic varieties.




Studies in Topology


Book Description

Studies in Topology is a compendium of papers dealing with a broad portion of the topological spectrum, such as in shape theory and in infinite dimensional topology. One paper discusses an approach to proper shape theory modeled on the "ANR-systems" of Mardesic-Segal, on the "mutations" of Fox, or on the "shapings" of Mardesic. Some papers discuss homotopy and cohomology groups in shape theory, the structure of superspace, on o-semimetrizable spaces, as well as connected sets that have one or more disconnection properties. One paper examines "weak" compactness, considered as either a strengthening of absolute closure or a weakening of relative compactness (subject to entire topological spaces or to subspaces of larger spaces). To construct spaces that have only weak properties, the investigator can use the various productivity theorems of Scarborough and Stone, Saks and Stephenson, Frolik, Booth, and Hechler. Another paper analyzes the relationship between "normal Moore space conjecture" and productivity of normality in Moore spaces. The compendium is suitable for mathematicians, physicists, engineers, and other professionals involved in topology, set theory, linear spaces, or cartography.




Lectures on Field Theory and Topology


Book Description

These lectures recount an application of stable homotopy theory to a concrete problem in low energy physics: the classification of special phases of matter. While the joint work of the author and Michael Hopkins is a focal point, a general geometric frame of reference on quantum field theory is emphasized. Early lectures describe the geometric axiom systems introduced by Graeme Segal and Michael Atiyah in the late 1980s, as well as subsequent extensions. This material provides an entry point for mathematicians to delve into quantum field theory. Classification theorems in low dimensions are proved to illustrate the framework. The later lectures turn to more specialized topics in field theory, including the relationship between invertible field theories and stable homotopy theory, extended unitarity, anomalies, and relativistic free fermion systems. The accompanying mathematical explanations touch upon (higher) category theory, duals to the sphere spectrum, equivariant spectra, differential cohomology, and Dirac operators. The outcome of computations made using the Adams spectral sequence is presented and compared to results in the condensed matter literature obtained by very different means. The general perspectives and specific applications fuse into a compelling story at the interface of contemporary mathematics and theoretical physics.




General Topology


Book Description

Among the best available reference introductions to general topology, this volume is appropriate for advanced undergraduate and beginning graduate students. Includes historical notes and over 340 detailed exercises. 1970 edition. Includes 27 figures.




Modern General Topology


Book Description

This classic work has been fundamentally revised to take account of recent developments in general topology. The first three chapters remain unchanged except for numerous minor corrections and additional exercises, but chapters IV-VII and the new chapter VIII cover the rapid changes that have occurred since 1968 when the first edition appeared. The reader will find many new topics in chapters IV-VIII, e.g. theory of Wallmann-Shanin's compactification, realcompact space, various generalizations of paracompactness, generalized metric spaces, Dugundji type extension theory, linearly ordered topological space, theory of cardinal functions, dyadic space, etc., that were, in the author's opinion, mostly special or isolated topics some twenty years ago but now settle down into the mainstream of general topology.