Topology of Gauge Fields and Condensed Matter


Book Description

''Intended mainly for physicists and mathematicians...its high quality will definitely attract a wider audience.'' ---Computational Mathematics and Mathematical Physics This work acquaints the physicist with the mathematical principles of algebraic topology, group theory, and differential geometry, as applicable to research in field theory and the theory of condensed matter. Emphasis is placed on the topological structure of monopole and instanton solution to the Yang-Mills equations, the description of phases in superfluid 3He, and the topology of singular solutions in 3He and liquid crystals.




A Brief Introduction to Topology and Differential Geometry in Condensed Matter Physics


Book Description

In the last years there have been great advances in the applications of topology and differential geometry to problems in condensed matter physics. Concepts drawn from topology and geometry have become essential to the understanding of several phenomena in the area. Physicists have been creative in producing models for actual physical phenomena which realize mathematically exotic concepts and new phases have been discovered in condensed matter in which topology plays a leading role. An important classification paradigm is the concept of topological order, where the state characterizing a system does not break any symmetry, but it defines a topological phase in the sense that certain fundamental properties change only when the system passes through a quantum phase transition. The main purpose of this book is to provide a brief, self-contained introduction to some mathematical ideas and methods from differential geometry and topology, and to show a few applications in condensed matter. It conveys to physicists the basis for many mathematical concepts, avoiding the detailed formality of most textbooks.




Field Theories of Condensed Matter Physics


Book Description

Presenting the physics of the most challenging problems in condensed matter using the conceptual framework of quantum field theory, this book is of great interest to physicists in condensed matter and high energy and string theorists, as well as mathematicians. Revised and updated, this second edition features new chapters on the renormalization group, the Luttinger liquid, gauge theory, topological fluids, topological insulators and quantum entanglement. The book begins with the basic concepts and tools, developing them gradually to bring readers to the issues currently faced at the frontiers of research, such as topological phases of matter, quantum and classical critical phenomena, quantum Hall effects and superconductors. Other topics covered include one-dimensional strongly correlated systems, quantum ordered and disordered phases, topological structures in condensed matter and in field theory and fractional statistics.




Topological Phases of Matter


Book Description

This important graduate level text unites the physical mechanisms behind the phenomena of topological matter within a theoretical framework.




Condensed Matter Field Theory


Book Description

This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.




Quantum Field Theory and Topology


Book Description

In recent years topology has firmly established itself as an important part of the physicist's mathematical arsenal. It has many applications, first of all in quantum field theory, but increasingly also in other areas of physics. The main focus of this book is on the results of quantum field theory that are obtained by topological methods. Some aspects of the theory of condensed matter are also discussed. Part I is an introduction to quantum field theory: it discusses the basic Lagrangians used in the theory of elementary particles. Part II is devoted to the applications of topology to quantum field theory. Part III covers the necessary mathematical background in summary form. The book is aimed at physicists interested in applications of topology to physics and at mathematicians wishing to familiarize themselves with quantum field theory and the mathematical methods used in this field. It is accessible to graduate students in physics and mathematics.




Topology in Condensed Matter


Book Description

This book reports new results in condensed matter physics for which topological methods and ideas are important. It considers, on the one hand, recently discovered systems such as carbon nanocrystals and, on the other hand, new topological methods used to describe more traditional systems such as the Fermi surfaces of normal metals, liquid crystals and quasicrystals. The authors of the book are renowned specialists in their fields and present the results of ongoing research, some of it obtained only very recently and not yet published in monograph form.




Quantum Field Theory and Condensed Matter


Book Description

Providing a broad review of many techniques and their application to condensed matter systems, this book begins with a review of thermodynamics and statistical mechanics, before moving onto real and imaginary time path integrals and the link between Euclidean quantum mechanics and statistical mechanics. A detailed study of the Ising, gauge-Ising and XY models is included. The renormalization group is developed and applied to critical phenomena, Fermi liquid theory and the renormalization of field theories. Next, the book explores bosonization and its applications to one-dimensional fermionic systems and the correlation functions of homogeneous and random-bond Ising models. It concludes with Bohm–Pines and Chern–Simons theories applied to the quantum Hall effect. Introducing the reader to a variety of techniques, it opens up vast areas of condensed matter theory for both graduate students and researchers in theoretical, statistical and condensed matter physics.




Geometry, Topology and Physics


Book Description

Differential geometry and topology have become essential tools for many theoretical physicists. In particular, they are indispensable in theoretical studies of condensed matter physics, gravity, and particle physics. Geometry, Topology and Physics, Second Edition introduces the ideas and techniques of differential geometry and topology at a level suitable for postgraduate students and researchers in these fields. The second edition of this popular and established text incorporates a number of changes designed to meet the needs of the reader and reflect the development of the subject. The book features a considerably expanded first chapter, reviewing aspects of path integral quantization and gauge theories. Chapter 2 introduces the mathematical concepts of maps, vector spaces, and topology. The following chapters focus on more elaborate concepts in geometry and topology and discuss the application of these concepts to liquid crystals, superfluid helium, general relativity, and bosonic string theory. Later chapters unify geometry and topology, exploring fiber bundles, characteristic classes, and index theorems. New to this second edition is the proof of the index theorem in terms of supersymmetric quantum mechanics. The final two chapters are devoted to the most fascinating applications of geometry and topology in contemporary physics, namely the study of anomalies in gauge field theories and the analysis of Polakov's bosonic string theory from the geometrical point of view. Geometry, Topology and Physics, Second Edition is an ideal introduction to differential geometry and topology for postgraduate students and researchers in theoretical and mathematical physics.




Recent Developments in Gauge Theories


Book Description

Almost all theories of fundamental interactions are nowadays based on the gauge concept. Starting with the historical example of quantum electrodynamics, we have been led to the successful unified gauge theory of weak and electromagnetic interactions, and finally to a non abelian gauge theory of strong interactions with the notion of permanently confined quarks. The. early theoretical work on gauge theories was devoted to proofs of renormalizability, investigation of short distance behaviour, the discovery of asymptotic freedom, etc . . , aspects which were accessible to tools extrapolated from renormalised perturbation theory. The second phase of the subject is concerned with the problem of quark confinement which necessitates a non-perturbative understanding of gauge theories. This phase has so far been marked by the introduc tion of ideas from geometry, topology and statistical mechanics in particular the theory of phase transitions. The 1979 Cargese Institute on "Recent Developments on Gauge Theories" was devoted to a thorough discussion of these non-perturbative, global aspects of non-abelian gauge theories. In the lectures and seminars reproduced in this volume the reader wilf find detailed reports on most of the important developments of recent times on non perturbative gauge fields by some of the leading experts and innovators in this field. Aside from lectures on gauge fields proper, there were lectures on gauge field concepts in condensed matter physics and lectures by mathematicians on global aspects of the calculus of variations, its relation to geometry and topology, and related topics.