Topology Through Inquiry


Book Description

Topology Through Inquiry is a comprehensive introduction to point-set, algebraic, and geometric topology, designed to support inquiry-based learning (IBL) courses for upper-division undergraduate or beginning graduate students. The book presents an enormous amount of topology, allowing an instructor to choose which topics to treat. The point-set material contains many interesting topics well beyond the basic core, including continua and metrizability. Geometric and algebraic topology topics include the classification of 2-manifolds, the fundamental group, covering spaces, and homology (simplicial and singular). A unique feature of the introduction to homology is to convey a clear geometric motivation by starting with mod 2 coefficients. The authors are acknowledged masters of IBL-style teaching. This book gives students joy-filled, manageable challenges that incrementally develop their knowledge and skills. The exposition includes insightful framing of fruitful points of view as well as advice on effective thinking and learning. The text presumes only a modest level of mathematical maturity to begin, but students who work their way through this text will grow from mathematics students into mathematicians. Michael Starbird is a University of Texas Distinguished Teaching Professor of Mathematics. Among his works are two other co-authored books in the Mathematical Association of America's (MAA) Textbook series. Francis Su is the Benediktsson-Karwa Professor of Mathematics at Harvey Mudd College and a past president of the MAA. Both authors are award-winning teachers, including each having received the MAA's Haimo Award for distinguished teaching. Starbird and Su are, jointly and individually, on lifelong missions to make learning—of mathematics and beyond—joyful, effective, and available to everyone. This book invites topology students and teachers to join in the adventure.




Topology Through Inquiry


Book Description

Topology Through Inquiry is a comprehensive introduction to point-set, algebraic, and geometric topology, designed to support inquiry-based learning (IBL) courses for upper-division undergraduate or beginning graduate students. The book presents an enormous amount of topology, allowing an instructor to choose which topics to treat. The point-set material contains many interesting topics well beyond the basic core, including continua and metrizability. Geometric and algebraic topology topics include the classification of 2-manifolds, the fundamental group, covering spaces, and homology (simplicial and singular). A unique feature of the introduction to homology is to convey a clear geometric motivation by starting with mod 2 coefficients. The authors are acknowledged masters of IBL-style teaching. This book gives students joy-filled, manageable challenges that incrementally develop their knowledge and skills. The exposition includes insightful framing of fruitful points of view as well as advice on effective thinking and learning. The text presumes only a modest level of mathematical maturity to begin, but students who work their way through this text will grow from mathematics students into mathematicians. Michael Starbird is a University of Texas Distinguished Teaching Professor of Mathematics. Among his works are two other co-authored books in the Mathematical Association of America's (MAA) Textbook series. Francis Su is the Benediktsson-Karwa Professor of Mathematics at Harvey Mudd College and a past president of the MAA. Both authors are award-winning teachers, including each having received the MAA's Haimo Award for distinguished teaching. Starbird and Su are, jointly and individually, on lifelong missions to make learning—of mathematics and beyond—joyful, effective, and available to everyone. This book invites topology students and teachers to join in the adventure.




Mathematics for Human Flourishing


Book Description

"The ancient Greeks argued that the best life was filled with beauty, truth, justice, play and love. The mathematician Francis Su knows just where to find them."--Kevin Hartnett, Quanta Magazine" This is perhaps the most important mathematics book of our time. Francis Su shows mathematics is an experience of the mind and, most important, of the heart."--James Tanton, Global Math Project For mathematician Francis Su, a society without mathematical affection is like a city without concerts, parks, or museums. To miss out on mathematics is to live without experiencing some of humanity's most beautiful ideas. In this profound book, written for a wide audience but especially for those disenchanted by their past experiences, an award-winning mathematician and educator weaves parables, puzzles, and personal reflections to show how mathematics meets basic human desires--such as for play, beauty, freedom, justice, and love--and cultivates virtues essential for human flourishing. These desires and virtues, and the stories told here, reveal how mathematics is intimately tied to being human. Some lessons emerge from those who have struggled, including philosopher Simone Weil, whose own mathematical contributions were overshadowed by her brother's, and Christopher Jackson, who discovered mathematics as an inmate in a federal prison. Christopher's letters to the author appear throughout the book and show how this intellectual pursuit can--and must--be open to all.




Number Theory Through Inquiry


Book Description

Number Theory Through Inquiry is an innovative textbook that leads students on a carefully guided discovery of introductory number theory. The book has two equally significant goals. One goal is to help students develop mathematical thinking skills, particularly, theorem-proving skills. The other goal is to help students understand some of the wonderfully rich ideas in the mathematical study of numbers. This book is appropriate for a proof transitions course, for an independent study experience, or for a course designed as an introduction to abstract mathematics. Math or related majors, future teachers, and students or adults interested in exploring mathematical ideas on their own will enjoy Number Theory Through Inquiry. Number theory is the perfect topic for an introduction-to-proofs course. Every college student is familiar with basic properties of numbers, and yet the exploration of those familiar numbers leads us to a rich landscape of ideas. Number Theory Through Inquiry contains a carefully arranged sequence of challenges that lead students to discover ideas about numbers and to discover methods of proof on their own. It is designed to be used with an instructional technique variously called guided discovery or Modified Moore Method or Inquiry Based Learning (IBL). Instructors' materials explain the instructional method. This style of instruction gives students a totally different experience compared to a standard lecture course. Here is the effect of this experience: Students learn to think independently: they learn to depend on their own reasoning to determine right from wrong; and they develop the central, important ideas of introductory number theory on their own. From that experience, they learn that they can personally create important ideas, and they develop an attitude of personal reliance and a sense that they can think effectively about difficult problems. These goals are fundamental to the educational enterprise within and beyond mathematics.




Elementary Topology


Book Description

This text contains a detailed introduction to general topology and an introduction to algebraic topology via its most classical and elementary segment. Proofs of theorems are separated from their formulations and are gathered at the end of each chapter, making this book appear like a problem book and also giving it appeal to the expert as a handbook. The book includes about 1,000 exercises.




Topologies of the Flesh


Book Description

This is an unprecedented marriage of topology (a branch of mathematics dealing with the properties of geometric figures that stay the same when the figures are distorted) and phenomenology. Through his unique application of qualitative mathematics, Rosen offers a detailed exploration of previously uncharted dimensions of human experience and the natural world.




Distilling Ideas


Book Description

Introduction -- Graphs -- Groups -- Calculus -- Conclusion.




Topology


Book Description

A graduate-level textbook that presents basic topology from the perspective of category theory. This graduate-level textbook on topology takes a unique approach: it reintroduces basic, point-set topology from a more modern, categorical perspective. Many graduate students are familiar with the ideas of point-set topology and they are ready to learn something new about them. Teaching the subject using category theory--a contemporary branch of mathematics that provides a way to represent abstract concepts--both deepens students' understanding of elementary topology and lays a solid foundation for future work in advanced topics.




Dimensions of Apeiron


Book Description

This book explores the evolution of space and time from the apeiron —the spaceless, timeless chaos of primordial nature. Rosen examines Western culture’s effort to deny apeiron, and the critical need now to lift the repression on apeiron for the sake of human individuation.




Heidegger's Topology


Book Description

This groundbreaking inquiry into the centrality of place in Martin Heidegger's thinking offers not only an illuminating reading of Heidegger's thought but a detailed investigation into the way in which the concept of place relates to core philosophical issues. In Heidegger's Topology, Jeff Malpas argues that an engagement with place, explicit in Heidegger's later work, informs Heidegger's thought as a whole. What guides Heidegger's thinking, Malpas writes, is a conception of philosophy's starting point: our finding ourselves already "there," situated in the world, in "place". Heidegger's concepts of being and place, he argues, are inextricably bound together. Malpas follows the development of Heidegger's topology through three stages: the early period of the 1910s and 1920s, through Being and Time, centered on the "meaning of being"; the middle period of the 1930s into the 1940s, centered on the "truth of being"; and the late period from the mid-1940s on, when the "place of being" comes to the fore. (Malpas also challenges the widely repeated arguments that link Heidegger's notions of place and belonging to his entanglement with Nazism.) The significance of Heidegger as a thinker of place, Malpas claims, lies not only in Heidegger's own investigations but also in the way that spatial and topographic thinking has flowed from Heidegger's work into that of other key thinkers of the past 60 years.