Touch in Virtual Environments


Book Description

Haptics: The state-of-the-art in building touch-based interfaces for virtual environments. -- Key research issues: model acquisition, contact detection, force feedback, compression, capture, and collaboration. -- Understanding the role of human factors in haptic interfaces. -- Applications: medical training, telesurgery, biological and scientific interfaces, military applications, sign language, museum display, and more. Haptics -- "touch-based" interface design -- is the exciting new frontier in research on virtual and immersive environments. In Touch in Virtual Environments, the field's leading researchers bring together their most advanced work and applications. They identify the key challenges facing haptic interface developers, present today's best solutions, and outline a clear research agenda for the future. This book draws upon work first presented at the breakthrough haptics conference held recently at USC's Integrated Media Systems Center. The editors and contributors begins by reviewing key haptics applications and the challenges of effective haptic rendering, presenting new insights into model acquisition, contact detection, force feedback, compression, capture, collaboration, and other key issues. Next, they focus on the complex human factors associated with successful haptic interfaces, examining questions such as: How can we make haptic displays more usable for blind and visually impaired users? What are the differences between perceiving texture with the bare skin and with a probe? In the book's final section, several of today's leading haptic applications are introduced, including telesurgery and surgical simulation; scientific visualization.




In Touch with the Future


Book Description

This book explores the science of touch. It brings together the latest findings from cognitive neuroscience about the processing of tactile information in humans. The book provides a comprehensive overview of scientific knowledge regarding themes such as tactile memory, tactile awareness (consciousness) and tactile attention.




Haptics Technologies


Book Description

The term “haptics” refers to the science of sensing and manipulation through touch. Multiple disciplines such as biomechanics, psychophysics, robotics, neuroscience, and software engineering converge to support haptics, and generally, haptic research is done by three communities: the robotics community, the human computer interface community, and the virtual reality community. This book is different from any other book that has looked at haptics. The authors treat haptics as a new medium rather than just a domain within one of the above areas. They describe human haptic perception and interfaces and present fundamentals in haptic rendering and modeling in virtual environments. Diverse software architectures for standalone and networked haptic systems are explained, and the authors demonstrate the vast application spectrum of this emerging technology along with its accompanying trends. The primary objective is to provide a comprehensive overview and a practical understanding of haptic technologies. An appreciation of the close relationship between the wide range of disciplines that constitute a haptic system is a key principle towards being able to build successful collaborative haptic environments. Structured as a reference to allow for fast accommodation of the issues concerned, this book is intended for researchers interested in studying touch and force feedback for use in technological multimedia systems in computer science, electrical engineering, or other related disciplines. With its novel approach, it paves the way for exploring research trends and challenges in such fields as interpersonal communication, games, or military applications.




Haptic Rendering


Book Description

For a long time, human beings have dreamed of a virtual world where it is possible to interact with synthetic entities as if they were real. It has been shown that the ability to touch virtual objects increases the sense of presence in virtual environments. This book provides an authoritative overview of state-of-theart haptic rendering algorithms




Collaborative Virtual Environments


Book Description

A Collaborative Virtual Environment (CVE) is a distributed, virtual reality designed to support collaborative activities. It is a topic of increasing interest to large global corporations, where work teams are often distributed over a large geographic area. Aimed at anyone involved in researching the design of tools for supporting distributed teams of workers, it helps the reader understand the latest technology, state-of-the-art research, and good working practice. Among the topics covered are: systems aspects of CVEs; user centered aspects of environment design; and methodologies for iterative evaluation and design.




Virtual Reality Technology


Book Description

A groundbreaking Virtual Reality textbook is now even better Virtual reality is a very powerful and compelling computer application by which humans can interface and interact with computer-generated environments in a way that mimics real life and engages all the senses. Although its most widely known application is in the entertainment industry, the real promise of virtual reality lies in such fields as medicine, engineering, oil exploration and the military, to name just a few. Through virtual reality scientists can triple the rate of oil discovery, pilots can dogfight numerically-superior "bandits," and surgeons can improve their skills on virtual (rather than real) patients. This Second Edition of the first comprehensive technical book on the subject of virtual reality provides updated and expanded coverage of the technology--where it originated, how it has evolved, and where it is going. The authors cover all of the latest innovations and applications that are making virtual reality more important than ever before, including: * Coverage on input and output interfaces including touch and force feedback * Computing architecture (with emphasis on the rendering pipeline and task distribution) * Object modeling (including physical and behavioral aspects) * Programming for virtual reality * An in-depth look at human factors issues, user performance, and * sensorial conflict aspects of VR * Traditional and emerging VR applications The new edition of Virtual Reality Technology is specifically designed for use as a textbook. Thus it includes definitions, review questions, and a Laboratory Manual with homework and programming assignments. The accompanying CD-ROM also contains video clips that reinforce the topics covered in the textbook. The Second Edition will serve as a state-of-the-art resource for both graduate and undergraduate students in engineering, computer science, and other disciplines. GRIGORE C. BURDEA is a professor at Rutgers-the State University of New Jersey, and author of the book Force and Touch Feedback for Virtual Reality, also published by Wiley. PHILIPPE COIFFET is a Director of Research at CNRS (French National Scientific Research Center) and Member of the National Academy of Technologies of France. He authored 20 books on Robotics and VR translated into several languages.




Immersed in Technology


Book Description

Produced as part of the Art and Virtual Environment Project conducted at the Banff Centre for the Arts in Banff, Canada from 1991 to 1994.




Stepping into Virtual Reality


Book Description

Virtual reality techniques are increasingly becoming indispensable in many areas. This book looks at how to generate advanced virtual reality worlds. It covers principles, techniques, devices and mathematical foundations, beginning with basic definitions, and then moving on to the latest results from current research and exploring the social implications of these. Very practical in its approach, the book is fully illustrated in colour and contains numerous examples, exercises and case studies. This textbook will allow students and practitioners alike to gain a practical understanding of virtual reality concepts, devices and possible applications.




Human Walking in Virtual Environments


Book Description

This book presents a survey of past and recent developments on human walking in virtual environments with an emphasis on human self-motion perception, the multisensory nature of experiences of walking, conceptual design approaches, current technologies, and applications. The use of Virtual Reality and movement simulation systems is becoming increasingly popular and more accessible to a wide variety of research fields and applications. While, in the past, simulation technologies have focused on developing realistic, interactive visual environments, it is becoming increasingly obvious that our everyday interactions are highly multisensory. Therefore, investigators are beginning to understand the critical importance of developing and validating locomotor interfaces that can allow for realistic, natural behaviours. The book aims to present an overview of what is currently understood about human perception and performance when moving in virtual environments and to situate it relative to the broader scientific and engineering literature on human locomotion and locomotion interfaces. The contents include scientific background and recent empirical findings related to biomechanics, self-motion perception, and physical interactions. The book also discusses conceptual approaches to multimodal sensing, display systems, and interaction for walking in real and virtual environments. Finally, it will present current and emerging applications in areas such as gait and posture rehabilitation, gaming, sports, and architectural design.




The Unity of the Senses


Book Description

Academic Press Series in Cognition and Perception: The Unity of the Senses: Interrelations Among the Modalities focuses on the perceptual processes, approaches, and methodologies involved in studies on the unity of the senses. The publication first elaborates on the doctrines of equivalent information, analogous sensory attributes and qualities, and common psychophysical properties. Discussions focus on discrimination, sensitivity, sound symbolism, intensity, brightness, and cross-modal perception of size, form, and space. The text then examines the doctrine of neural correspondences and sound symbolism in poetry, including sound and meaning, analogue and formal representation, vowel symbolism in poetry, coding perceptual information, coding sensory attributes, and evolution and development. The manuscript takes a look at synesthetic metaphor in poetry, as well as unity of the senses and synesthetic metaphor, warm and cool colors, synesthetic metaphors of odor and music, metaphorical imperative, and the music of Conrad Aiken. The publication is a valuable source of data for researchers interested in the unity of the senses.