Toward a Sustainable Agriculture Through Plant Biostimulants


Book Description

Over the past decade, interest in plant biostimulants has been on the rise, compelled by the growing interest of researchers, extension specialists, private industries, and farmers in integrating these products in the array of environmentally friendly tools to secure improved crop performance, nutrient efficiency, product quality, and yield stability. Plant biostimulants include diverse organic and inorganic substances, natural compounds, and/or beneficial microorganisms such as humic acids, protein hydrolysates, seaweed and plant extracts, silicon, endophytic fungi like mycorrhizal fungi, and plant growth-promoting rhizobacteria belonging to the genera Azospirillum, Azotobacter, and Rhizobium. Other substances (e.g., chitosan and other biopolymers and inorganic compounds) can have biostimulant properties, but their classification within the group of biostimulants is still under consideration. Plant biostimulants are usually applied to high-value crops, mainly greenhouse crops, fruit trees and vines, open-field crops, flowers, and ornamentals to sustainably increase yield and product quality. The global biostimulant market is currently estimated at about $2.0 billion and is expected to reach $3.0 billion by 2021 at an annual growth rate of 13%. A growing interest in plant biostimulants from industries and scientists was demonstrated by the high number of published peer-reviewed articles, conferences, workshops, and symposia in the past ten years. This book compiles several original research articles, technology reports, methods, opinions, perspectives, and invited reviews and mini reviews dissecting the biostimulatory action of these natural compounds and substances and beneficial microorganisms on crops grown under optimal and suboptimal growing conditions (e.g., salinity, drought, nutrient deficiency and toxicity, heavy metal contaminations, waterlogging, and adverse soil pH conditions). Also included are contributions dealing with the effect as well as the molecular and physiological mechanisms of plant biostimulants on nutrient efficiency, product quality, and modulation of the microbial population both quantitatively and qualitatively. In addition, identification and understanding of the optimal method, time, rate of application and phenological stage for improving plant performance and resilience to stress as well as the best combinations of plant species/cultivar × environment × management practices are also reported. We strongly believe that high standard reflected in this compilation on the principles and practices of plant biostimulants will foster knowledge transfer among scientific communities, industries, and agronomists, and will enable a better understanding of the mode of action and application procedures of biostimulants in different cropping systems.




Biostimulants in Agriculture II: Towards a Sustainable Future


Book Description

Modern agriculture needs to review and broaden its practices and business models, by integrating opportunities coming from different adjacent sectors and value chains, including the bio-based industry, in a fully circular economy strategy. Searching for new tools and technologies to increase crop productivity under optimal and sub-optimal conditions and to improve resources use efficiency is crucial to ensure food security while preserving soil quality, microbial biodiversity, and providing business opportunities for farmers. Biostimulants based on microorganisms or organic substances obtained from renewable materials represent a sustainable, efficient technology or complement to synthetic counterparts, to improve nutrient use efficiency and secure crop yield stability. Under the new European Union Regulation 2019/1009, plant biostimulants were defined based on four agricultural functional claims as follows: Plant biostimulants are products that stimulate plant nutrition processes independently of the product's nutrient content with the sole aim of improving one or more of the following characteristics of the plant and/or the plant rhizosphere: 1) nutrient use efficiency, 2) tolerance resistance to (a)biotic stress, 3) quality characteristics or 4) availability of confined nutrients in the soil or rhizosphere’. Many diverse natural substances and chemical derivatives of natural or synthetic compounds, as well as beneficial microorganisms, are cataloged as plant biostimulants including i) humic substances, ii) plant or animal-based protein hydrolysates, iii) macro and micro-algal extracts, iv) silicon, v) arbuscular mycorrhizal fungi (AMF) and vi) plant growth-promoting rhizobacteria (PGPR) belonging to the Azotobacter, Azospirillum and Rhizobium genera.




Biostimulants in Agriculture


Book Description




Biostimulants for Crops from Seed Germination to Plant Development


Book Description

Biostimulants for crops from seed germination to plant development focuses on the effects and roles of natural biostimulants in every aspect of plant growth development to reduce the use of harmful chemical fertilizers and pesticides. Biostimulants are a group of substances of natural origin that offer a potential to reduce the dependency on harmful chemical fertilizers causing environmental degradation. While there is extensive literature on biostimulants, there remains a gap in understanding how natural biostimulants work and their practical application. This book fills that gap, presenting the ways in which biostimulants enhance seed vigor and plant productivity by looking into their mode of action, an area still being researched for deeper understanding. Exploring the roles of seed germination, pollen tube formation, pollen-pistil interaction, flower and fruit setting, to plant pigments, rhizospheric and soil microorganisms, the book also sheds light on the challenges and realistic opportunities for the use of natural biostimulants. - Approaches biostimulant research with the goal of transforming scientific research into practical application - Includes real-world examples from laboratory, greenhouse and field experiments - Presents the biochemical, physiological and molecular mode of action of biostimulants




Bioformulations: for Sustainable Agriculture


Book Description

More than a century has passed since the first bioformulations were introduced to the market. But there is still much to be done, explored and developed. Though bioformulations offer green alternatives and are important for sustainable agriculture, they make up only a small fraction of the total additions used to enhance crop yields or protect them from pests. There is a great need to develop bioformulations that can promote confidence among end users; accordingly, it is imperative that bioformulations to replace chemicals be reliable and overcome the shortcomings of the past. Bioformulations: for Sustainable Agriculture discusses all the issues related to the current limitations and future development of bioformulations. It examines in detail those bioformulations that include biofertilizers and biopesticides (also commonly known as bioinoculants), presenting a global picture of their development. Further chapters address diverse microbes that are already being or could be used as bioformulations. The book also discusses the techniques, tools and other additions required to establish bioformulations as trustworthy and global solutions. It assesses the types of bioformulations currently available on the market, while also considering the future roles of bioformulations, including the reclamation of marginal and polluted soils. Further, it discusses the current legislation and much-needed amendments. Overall the book provides a comprehensive outlook on the status quo of bioformulations and the future approaches needed to improve them and achieve sustainable agriculture and food security without sacrificing the quality of soils. This will be extremely important in offering chemical-free foods and a better future for generations to come.




Microbial Biostimulants for Plant Growth and Abiotic Stress Amelioration


Book Description

Microbial Biostimulants for Plant Growth, Development and Abiotic Stress Amelioration provides readers with insights into the major role of biostimulants in plant growth and development while under abiotic stress. The term biostimulants is broadly used to reference a group of diverse substances and microorganisms that stimulate life or that promote favorable plant responses. They stimulate natural processes to enhance/benefit nutrient uptake, nutrient efficiency, tolerance to abiotic stress, and crop quality. Many biostimulants improve nutrition and they do so regardless of their own nutrient contents. Further, recently microbe-based biostimulants have emerged as important plant protectors under a range of adverse conditions. Microbial Biostimulants for Plant Growth, Development and Abiotic Stress Amelioration is the latest volume in the Biostimulants and Protective Biochemical Agents series. Presents the potential for more environmentally sustainable interventions against abiotic stresses Highlights the variety of applications for which biostimulants are proving effective Includes coverage of commercialization and role in addressing Sustainability Development Goals




Biostimulants in Plant Protection and Performance


Book Description

Biostimulants (a diverse class of compounds including substances or microorganisms) are helpful in sustainable plants growth and development. They accelerate plant growth, yield, and chemical composition even under unfavorable conditions. The main biostimulants are nitrogen-containing compounds, humic materials, some specific compounds released by microbes, plants, and animals, various seaweed extracts, bio-based nanomaterials, phosphite, silicon, and so on. Additionally, new generation products and bioproducts are being developed for sustainable plant growth and protection. Some research works in the area of biotechnology and nanobiotechnology have shown improved sustainable plant growth and production. The protective roles of biostimulants are varied depends on the compound and plant species. Exposure of biostimulants have shown accelerated plants growth and developmental processes for instance, manage stomatal conductance and rate of transpiration, and increase rate of photosynthesis etc. They also increased crop plants immune systems against the adverse situation. Thus, use of innovations of new generation biostimulants also enhance plant production systems, through a significant reduction of synthetic chemicals such as pesticides and fertilizers. Moreover, bioinoculants commercial products obtained from seaweed extract, humic acids, amino acids, fulvic acids, and some microbial inoculants have shown their potential role in adventitious root induction in plants. Microbial inoculants or microbial-based biostimulants, as a promising and eco-friendly technology, can be widely used to address environmental concerns and fulfill the need for developing sustainable or modern agriculture practices. They have great potential to elicit plant tolerance to various climate change-related stresses and thus enhance plant growth and overall performance-related features. However, for successful implementation biostimulants-based agriculture in the field under changing climate conditions, an understanding of plant functions and biostimulants interaction or action mechanisms coping with various abiotic as well as biotic stresses at the physicochemical, metabolic, and molecular levels is required. Mycorrhizae are beneficial fungi that form symbiotic associations with plants and aid in plant development, disease resistance, and soil health is well established. Similarly, phyllospheric microbiome are known to possess different plant growth promotion attributes like nitrogen fixation, phosphate solubilization, biocontrol activity, and increase plant resistance towards abiotic stresses. The plant growth promotion traits possessed by these phyllospheric microbiota can be judiciously harbored for phyllospheric and rhizospheric engineering. The engineered phyllospheric and rhizospheric microbiome can increase the plant growth and productivity, thereby, can act as a driving force for increasing the agricultural production in a sustainable manner. Taken together, this book aims to contribute to the recent understanding associated with the various role and application of biostimulants on different plant for their sustainable growth and management. - Discusses our current understanding of, and advances in, biostimulants, along with their application in plants growth performance and overall management - Explores new techniques, new generation products, and bioproducts - Highlights the role of seaweed extract, humic acids, protein hydrolysates, amino acids, melatonin, paramylon, fulvic acids, microbial inoculants (phyllospheric and rhizospheric), and more




Biostimulants for Crop Production and Sustainable Agriculture


Book Description

Agricultural biostimulants are a group of substances or microorganisms, based on natural resources, that are applied to plants or soils to improve nutrient uptake and plant growth, and provide better tolerance to various stresses. Their function is to stimulate the natural processes of plants, or to enrich the soil microbiome to improve plant growth, nutrition, abiotic and/or biotic stress tolerance, yield and quality of crop plants. Interest in plant biostimulants has been on the rise over the past 10 years, driven by the growing interest of researchers and farmers in environmentally-friendly tools for improved crop performance. Improved crop production technologies are urgently needed to meet the growing demand for food for the ever-increasing global population by addressing the impacts of changing climate on agriculture. This book is of interest to researchers in agriculture, agronomy, crop and plant science, soil science and environmental science.




Smart Agrochemicals for Sustainable Agriculture


Book Description

Smart Agrochemicals for Sustainable Agriculture proposes products that fulfill the need for chemicals that provide a sustainable delivery system for nutrients necessary to maximize the production of agricultural animals and plants while producing the smallest possible environmental footprint. This book addresses all aspects related to the production process, including chemical formulas, stability of formulations, and the application of the effect of its utilization. Over the past decade, biobased chemicals have received significant attention as candidate resource materials in fertilizers and agrochemicals production due to their renewability. Substitution of conventional raw materials with biobased requires a new approach towards the development of technology. On the other hand, the use of biobased chemicals, such as biostimulants, bioregulators and biofertilizers offers a new palette of products that are natural, thus their application does not pose an impact on the environment (residues) or cultivated plants. - Presents ideas for new products that provide appropriate nutrition while limiting environmental footprints - Includes a full range of the production process, from chemical formulas to establishing the stability of formulations, applications and effects - Offers a host of new products that are natural and whose applications do not negatively impact the environment nor cultivated plants




Microbial Inoculants in Sustainable Agricultural Productivity


Book Description

How to achieve sustainable agricultural production without compromising environmental quality, agro-ecosystem function and biodiversity is a serious consideration in current agricultural practices. Farming systems’ growing dependency on chemical inputs (fertilizers, pesticides, nutrients etc.) poses serious threats with regard to crop productivity, soil fertility, the nutritional value of farm produce, management of pests and diseases, agro-ecosystem well-being, and health issues for humans and animals. At the same time, microbial inoculants in the form of biofertilizers, plant growth promoters, biopesticides, soil health managers, etc. have gained considerable attention among researchers, agriculturists, farmers and policy makers. The first volume of the book Microbial Inoculants in Sustainable Agricultural Productivity - Research Perspectives highlights the efforts of global experts with regard to various aspects of microbial inoculants. Emphasis is placed on recent advances in microbiological techniques for the isolation, characterization, identification and evaluation of functional properties using biochemical and molecular tools. The taxonomic characterization of agriculturally important microorganisms is documented, along with their applications in field conditions. The book exploresthe identification, characterization and diversity analysis of endophytic microorganisms in various crops including legumes/ non-legumes, as well as the assessment of their beneficial impacts in the context of promotingplant growth. Moreover, it provides essential updates onthe diversity and role of plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal mycorrhizal fungi (AMF). Further chaptersexamine in detailbiopesticides, thehigh-density cultivation of bioinoculants in submerged culture, seed biopriming strategies for abiotic and biotic stress tolerance, andPGPR as abio-control agent. Given its content,the book offers a valuable resource for researchers involved in research and development concerningPGPR, biopesticides and microbial inoculants.