Toward Detonation Theory


Book Description

It is known that the Chapman-Jouguet theory of detonation is based on the assumption of an instantaneous and complete transformation of explosives into detonation products in the wave front. Therefore, one should not expect from the theory any interpretations of the detonation limits, such as shock initiation of det onation and kinetic instability and propagation (failure diameter). The Zeldovich-Von Neuman-Doring (ZND) theory of detonation appeared, in fact, as a response to the need for a theory capable of interpreting such limits, and the ZND detonation theory gave qualitative interpretations to the detonation limits. These interpretations were based essentially on the theoretical notion that the mechanism of explosives transformation at detonation is a combustion of a layer of finite thickness of shock-compressed explosive behind the wave shock front with the velocity of the front. However, some experimental findings turned out to be inconsistent with the the ory. A very small change of homogeneous (liquid) explosives detonation velocity with explosive charge diameter near the rather sizable failure diameter is one of the findings. The elucidation of the nature of this finding has led to the discovery of a new phenomenon. This phenomenon has come to be known as the breakdown (BD) of the explosive self-ignition behind the front of shock waves under the effect of rarefaction waves.




Detonation


Book Description

Comprehensive review of detonation explores the "simple theory" and experimental tests of the theory; flow in a reactive medium; steady detonation; the nonsteady solution; and the structure of the detonation front. 1979 edition.




Handbook of Shock Waves


Book Description




Combustion, Flames and Explosions of Gases


Book Description

Combustion, Flames, and Explosions of Gases, Second Edition focuses on the processes, methodologies, and reactions involved in combustion phenomena. The publication first offers information on theoretical foundations, reaction between hydrogen and oxygen, and reaction between carbon monoxide and oxygen. Discussions focus on the fundamentals of reaction kinetics, elementary and complex reactions in gases, thermal reaction, and combined hydrogen-carbon monoxide-oxygen reaction. The text then elaborates on the reaction between hydrocarbons and oxygen and combustion waves in laminar flow. The manuscript tackles combustion waves in turbulent flow and air entrainment and burning of jets of fuel gases. Topics include effect of turbulence spectrum and turbulent wrinkling on combustion wave propagation; ignition of high-velocity streams by hot solid bodies; burners with primary air entrainment; and description of jet flames. The book then takes a look at detonation waves in gases; emission spectra, ionization, and electric-field effects in flames; and methods of flame photography and pressure recording. The publication is a valuable reference for readers interested in combustion phenomena.




Detonation Phenomena of Condensed Explosives


Book Description

This book presents fundamental theory of shock and detonation waves as well as selected studies in detonation research in Japan, contributed by selected experts in safety research on explosives, development of industrial explosives, and application of explosives. It also reports detonation research in Japan featuring industrial explosives that include ammonium nitrate-based explosives and liquid explosives. Intended as a monographic-style book, it consistently uses technical terms and symbols and creates organic links between various detonation phenomena in application of explosives, fundamental theory of detonation waves, measurement methods, and individual studies. Among other features, the book presents a historical perspective of shock wave and detonation research in Japan, pedagogical materials for young researchers in detonation physics, and an introduction to works in Japan, including equations of state, which are worthy of attention but about which very little is known internationally. Further, the concise pedagogical chapters also characterize this book as a primer of detonation of condensed explosives and help readers start their own research.




Combustion Theory


Book Description

Combustion Theory delves deeper into the science of combustion than most other texts and gives insight into combustions from a molecular and a continuum point of view. The book presents derivations of the basic equations of combustion theory and contains appendices on the background of subjects of thermodynamics, chemical kinetics, fluid dynamics, and transport processes. Diffusion flames, reactions in flows with negligible transport and the theory of pre-mixed flames are treated, as are detonation phenomena, the combustion of solid propellents, and ignition, extinction, and flamibility pehnomena.




The Detonation Phenomenon


Book Description

This book introduces the detonation phenomenon in explosives. It is ideal for engineers and graduate students with a background in thermodynamics and fluid mechanics. The material is mostly qualitative, aiming to illustrate the physical aspects of the phenomenon. Classical idealized theories of detonation waves are presented first. These permit detonation speed, gas properties ahead of and behind the detonation wave, and the distribution of fluid properties within the detonation wave itself to be determined. Subsequent chapters describe in detail the real unstable structure of a detonation wave. One-, two-, and three-dimensional computer simulations are presented along with experimental results using various experimental techniques. The important effects of confinement and boundary conditions and their influence on the propagation of a detonation are also discussed. The final chapters cover the various ways detonation waves can be formed and provide a review of the outstanding problems and future directions in detonation research.










Modern Methods for Multidimensional Dynamics Computations in Chemistry


Book Description

This volume describes many of the key practical theoretical techniques that have been developed to treat chemical dynamics problems in many-atom systems. It contains thorough treatments of fundamental theory and prescriptions for performing computations. The selection of methods, ranging from gas phase bimolecular reactions to complex processes in condensed phases, reflects the breadth of the field.The book is an excellent reference for proven and accepted methods as well as for theoretical approaches that are still being developed. It is appropriate for graduate students and other ?novices? who wish to begin working in chemical dynamics as well as active researchers who wish to acquire a wider knowledge of the field.