Toward Future Engineering of the N-Glycosylation Pathways in Microalgae for Optimizing the Production of Biopharmaceuticals


Book Description

Microalgae are eukaryotic and photosynthetic organisms which are commonly used in biotechnology to produce high added value molecules. Recently, biopharmaceuticals such as monoclonal antibodies have been successfully produced in microalgae such as Chlamydomonas reinhardtii and Phaeodactylum tricornutum. Most of these recombinant proteins are indeed glycosylated proteins, and it is well established that their glycan structures are essential for the bioactivity of the biopharmaceuticals. Therefore, prior to any commercial usage of such algae-made biopharmaceuticals, it is necessary to characterize their glycan structures and erase glycosylation differences that may occur in comparison with their human counterpart. In this context, the chapter summarizes successful attempts to produce biopharmaceuticals in microalgae and underlines current information regarding glycosylation pathways in microalgae. Finally, genome editing strategies that would be essential in the future to optimize the microalgae glycosylation pathways are highlighted.




Microalgal Biotechnology


Book Description

Microalgal Biotechnology presents an authoritative and comprehensive overview of the microalgae-based processes and products. Divided into 10 discreet chapters, the book covers topics on applied technology of microalgae. Microalgal Biotechnology provides an insight into future developments in each field and extensive bibliography. It will be an essential resource for researchers and academic and industry professionals in the microalgae biotechnology field.







Glycosylation Engineering of Biopharmaceuticals


Book Description

Glyco-engineering is being developed as a method to control the composition of carbohydrates and to enhance the pharmacological properties of monoclonal antibodies (mAbs) and other proteins. In Glycosylation Engineering of Biopharmaceuticals: Methods and Protocols, experts in the field provide readers with production and characterization protocols of glycoproteins and glyco-engineered biopharmaceuticals with a focus on mAbs. The volume is divided in four complementary parts dealing with glyco-engineering of therapeutic proteins, glycoanalytics, glycoprotein complexes characterization, and PK/PD assays for therapeutic antibodies. Written in the highly successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Glycosylation Engineering of Biopharmaceuticals: Methods and Protocols serves as an ideal guide for scientists striving to push forward the exciting field of engineered biopharmaceuticals.







Systemic Approach to Characterize and Develop a Cell Free Glycoprotein Remodeling Platform


Book Description

Glycosylation has profound impacts in many biological processes, such as immune response, inflammation, cell- cell communication, and host- pathogen interaction. The importance of glycosylation is further accentuated as more than 70% of approved protein-based drugs are asparagine-linked (N-linked) glycoproteins. In many cases, the efficacy, safety, and stability of glycoprotein drugs are dictated by its glycan structure. Despite its importance, advancement in glycoscience and glycoengineering is hindered, largely due to insufficient understanding of glycan biosynthesis and bioprocess, as well as, a lack of platform for producing homogeneous designed glycan structures on proteins. Current glycoprotein expression platforms, such as using Chinese hamster ovary (CHO) cell line, cannot avoid heterogeneous glycoform with high batch to batch variability due to their endogenous glycosylation pathways that are sensitive to a change in culture environment. Moreover, the complexity of metabolic network inside cells has made it difficult to understand and engineer specific glycosylation pathways to produce designer glycoproteins. To address those challenges systematically, we proposed to integrate experimental and mathematical methods, such as E. coli- based cell free glycoprotein synthesis (CFGpS) and constrained based flux balance analysis (FBA) to characterize and optimize glycoprotein synthesis. This platform will in the future allow us to robustly and systematically engineer novel glycosylation pathways. To approach that, we first developed a platform for enzymatically remodeling glycan structures on therapeutic relevant N- glycoproteins. This technology allowed us to have direct control of the glycoform and to produce homogeneous glycoproteins for structure- function relationship study. As a whole, we anticipated our mathematical and experimental approach could facilitate the fundamental understanding in glycoscience and could provide a novel approach for producing glycoprotein therapeutics.




Glyco-Engineering


Book Description

Conceived with the intention of providing an array of strategies and technologies currently in use for glyco-engineering distinct living organisms, this book contains a wide range of methods being developed to control the composition of carbohydrates and the properties of proteins through manipulations on the production host rather than in the protein itself. The first five sections deal with host-specific glyco-engineering and contain chapters that provide protocols for modifications of the glycosylation pathway in bacteria, yeast, insect, plants and mammalian cells, while the last two sections explore alternative approaches to host glyco-engineering and selected protocols for the analysis of the N-glycans and glyco-profiling by mass spectrometry. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and tips on troubleshooting and avoiding known pitfalls. Authoritative and extensive, Glyco-Engineering: Methods and Protocols offers vast options to help researchers to choose the expression system and approach that best suits their intended protein research or applications.




Plant Glycobiology – a sweet world of lectins, glycoproteins, glycolipids and glycans


Book Description

Plants synthesize a wide variety of unique glycan structures which play essential roles during the life cycle of the plant. Being omnipresent throughout the plant kingdom, ranging from simple green algae to modern flowering plants, glycans contribute to many diverse processes. Glycans can function as structural components in the plant cell wall, assist in the folding of nascent proteins, act as signaling molecules in plant defense responses or (ER) stress pathways, or serve within the energy metabolism of a plant. In most cases, glycans are attached to other macromolecules to form so-called glycoconjugates (e.g. glycoproteins, proteoglycans and glycolipids), but they can also be present as free entities residing in the plant cell. Next to the broad, complex set of glycans, plants also evolved an elaborate collection of lectins or proteins with a lectin-like domain, which can recognize and bind to endogenous (plants-own) or exogenous (foreign) glycans. Though still poorly understood in plants, the dynamic interactions between lectins and carbohydrate structures are suggested to be involved in gene transcription, protein folding, protein transport, cell adhesion, signaling as well as defense responses. As such, a complex and largely undetermined glycan-interactome is established inside plant cells, between cells and their surrounding matrix, inside the extracellular matrix, and even between organisms. Studying the biological roles of plant glycans will enable to better understand plant development and physiology in order to fully exploit plants for food, feed and production of pharmaceutical proteins. In this Research Topic, we want to provide a platform for articles describing the latest research, perspectives and methodologies related to the fascinating world of plant glycobiology, with a focus on following subjects: 1. Identification and characterization of plant glycans, their biosynthetic and degradation enzymes 2. Characterization of plant lectins and glycoproteins 3. Plant glycans in the plant’s energy metabolism 4. Role of plant glycans in plant defense signaling 5. Use of plant lectins in pest control 6. Plant lectins as new tools in human medicine 7. Glyco-engineering in plants




Transgenic Microalgae as Green Cell Factories


Book Description

Microalgae have been largely commercialized as food and feed additives, and their potential as a source of high-added value compounds is well known. Yet, only a few species of microalgae have been genetically transformed with efficiency. A better understanding of the mechanisms that control the regulation of gene expression in eukaryotes is therefore needed. In this book a group of outstanding researchers working on different areas of microalgae biotechnology offer a global vision of the genetic manipulation of microalgae and their applications.