Thriving on Our Changing Planet


Book Description

We live on a dynamic Earth shaped by both natural processes and the impacts of humans on their environment. It is in our collective interest to observe and understand our planet, and to predict future behavior to the extent possible, in order to effectively manage resources, successfully respond to threats from natural and human-induced environmental change, and capitalize on the opportunities â€" social, economic, security, and more â€" that such knowledge can bring. By continuously monitoring and exploring Earth, developing a deep understanding of its evolving behavior, and characterizing the processes that shape and reshape the environment in which we live, we not only advance knowledge and basic discovery about our planet, but we further develop the foundation upon which benefits to society are built. Thriving on Our Changing Planet presents prioritized science, applications, and observations, along with related strategic and programmatic guidance, to support the U.S. civil space Earth observation program over the coming decade.




Hydrological Modelling and the Water Cycle


Book Description

This volume is a collection of a selected number of articles based on presentations at the 2005 L’Aquila (Italy) Summer School on the topic of “Hydrologic Modeling and Water Cycle: Coupling of the Atmosphere and Hydrological Models”. The p- mary focus of this volume is on hydrologic modeling and their data requirements, especially precipitation. As the eld of hydrologic modeling is experiencing rapid development and transition to application of distributed models, many challenges including overcoming the requirements of compatible observations of inputs and outputs must be addressed. A number of papers address the recent advances in the State-of-the-art distributed precipitation estimation from satellites. A number of articles address the issues related to the data merging and use of geo-statistical techniques for addressing data limitations at spatial resolutions to capture the h- erogeneity of physical processes. The participants at the School came from diverse backgrounds and the level of - terest and active involvement in the discussions clearly demonstrated the importance the scienti c community places on challenges related to the coupling of atmospheric and hydrologic models. Along with my colleagues Dr. Erika Coppola and Dr. Kuolin Hsu, co-directors of the School, we greatly appreciate the invited lectures and all the participants. The members of the local organizing committee, Drs Barbara Tomassetti; Marco Verdecchia and Guido Visconti were instrumental in the success of the school and their contributions, both scienti cally and organizationally are much appreciated.







Calibration of Watershed Models


Book Description

Published by the American Geophysical Union as part of the Water Science and Application Series, Volume 6. During the past four decades, computer-based mathematical models of watershed hydrology have been widely used for a variety of applications including hydrologic forecasting, hydrologic design, and water resources management. These models are based on general mathematical descriptions of the watershed processes that transform natural forcing (e.g., rainfall over the landscape) into response (e.g., runoff in the rivers). The user of a watershed hydrology model must specify the model parameters before the model is able to properly simulate the watershed behavior.




Hydrologic Sciences


Book Description

Hydrologic science, an important, interdisciplinary science dealing with the occurrence, distribution, and properties of water on Earth, is key to understanding and resolving many contemporary, large-scale environmental issues. The Water Science and Technology Board used the opportunity of its 1997 Abel Wolman Distinguished Lecture to assess the vitality of the hydrologic sciences by the hydrologic community. The format included focus by lecturer Thomas Dunne on the intellectual vitality of the hydrologic sciences, followed by a symposium featuring several invited papers and discussions. Hydrologic Sciences is a compilation of the Wolman Lecture and the papers, preceded by a summarizing overview. The volume stresses a number of needs for furtherance of hydrologic science, including development of a coherent body of transferable theory and an intellectual center for the science, communication across multiple geo- and environmental science disciplines, appropriate measurements and observations, and provision of central guidance for the field.




NOAA's Role in Space-Based Global Precipitation Estimation and Application


Book Description

The National Oceanic and Atmospheric Administration (NOAA) uses precipitation data in many applications including hurricane forecasting. Currently, NOAA uses data collected from the Tropical Rainfall Measuring Mission (TRMM) satellite that was launched in 1997 by NASA in cooperation with the Japan Aerospace Exploration Agency. NASA is now making plans to launch the Global Precipitation Measurement (GPM) mission in 2013 to succeed TRMM, which was originally intended as a 3 to 5 year mission but has enough fuel to orbit until 2012. The GPM mission consists of a "core" research satellite flying with other "constellation" satellites to provide global precipitation data products at three-hour intervals. This book is the second in a 2-part series from the National Research Council on the future of rainfall measuring missions. The book recommends that NOAA begin its GPM mission preparations as soon as possible and that NOAA develop a strategic plan for the mission using TRMM experience as a guide. The first book in the series, Assessment of the Benefits of Extending the Tropical Rainfall Measuring Mission (December 2004), recommended that the TRMM mission be extended as long as possible because of the quality, uniqueness, and many uses of its data. NASA has officially extended the TRMM mission until 2009.




Next Generation Earth System Prediction


Book Description

As the nation's economic activities, security concerns, and stewardship of natural resources become increasingly complex and globally interrelated, they become ever more sensitive to adverse impacts from weather, climate, and other natural phenomena. For several decades, forecasts with lead times of a few days for weather and other environmental phenomena have yielded valuable information to improve decision-making across all sectors of society. Developing the capability to forecast environmental conditions and disruptive events several weeks and months in advance could dramatically increase the value and benefit of environmental predictions, saving lives, protecting property, increasing economic vitality, protecting the environment, and informing policy choices. Over the past decade, the ability to forecast weather and climate conditions on subseasonal to seasonal (S2S) timescales, i.e., two to fifty-two weeks in advance, has improved substantially. Although significant progress has been made, much work remains to make S2S predictions skillful enough, as well as optimally tailored and communicated, to enable widespread use. Next Generation Earth System Predictions presents a ten-year U.S. research agenda that increases the nation's S2S research and modeling capability, advances S2S forecasting, and aids in decision making at medium and extended lead times.




Groundwater Recharge in a Desert Environment


Book Description

Published by the American Geophysical Union as part of the Water Science and Application Series, Volume 9. Groundwater recharge, the flux of water across the water table, is arguably the most difficult component of the hydrologic cycle to measure. In arid and semiarid regions the problem is exacerbated by extremely small recharge fluxes that are highly variable in space and time. --from the Preface Groundwater Recharge in a Desert Environment: The Southwestern United States speaks to these issues by presenting new interpretations and research after more than two decades of discipline-wide study. Discussions ondeveloping environmental tracers to fingerprint sources and amounts of groundwater at the basin scalethe critical role of vegetation in hydroecological processesnew geophysical methods in quantifying channel rechargeapplying Geographical Information System (GIS) models to land surface processescoupling process-based vadose zone to groundwater modeling, and more make this book a significant resource for hydmlogists, biogeoscientists, and geochemists concerned with water and water-related issues in arid and semiarid regions.




Integrating Multiscale Observations of U.S. Waters


Book Description

Water is essential to life for humans and their food crops, and for ecosystems. Effective water management requires tracking the inflow, outflow, quantity and quality of ground-water and surface water, much like balancing a bank account. Currently, networks of ground-based instruments measure these in individual locations, while airborne and satellite sensors measure them over larger areas. Recent technological innovations offer unprecedented possibilities to integrate space, air, and land observations to advance water science and guide management decisions. This book concludes that in order to realize the potential of integrated data, agencies, universities, and the private sector must work together to develop new kinds of sensors, test them in field studies, and help users to apply this information to real problems.




Hydrometeorology


Book Description

This book describes recent developments in hydrometeorological forecasting techniques for a range of timescales, from short term to seasonal and longer terms. It conveniently brings together both meteorological and hydrological aspects in a single volume.