Graphs and Geometry


Book Description

Graphs are usually represented as geometric objects drawn in the plane, consisting of nodes and curves connecting them. The main message of this book is that such a representation is not merely a way to visualize the graph, but an important mathematical tool. It is obvious that this geometry is crucial in engineering, for example, if you want to understand rigidity of frameworks and mobility of mechanisms. But even if there is no geometry directly connected to the graph-theoretic problem, a well-chosen geometric embedding has mathematical meaning and applications in proofs and algorithms. This book surveys a number of such connections between graph theory and geometry: among others, rubber band representations, coin representations, orthogonal representations, and discrete analytic functions. Applications are given in information theory, statistical physics, graph algorithms and quantum physics. The book is based on courses and lectures that the author has given over the last few decades and offers readers with some knowledge of graph theory, linear algebra, and probability a thorough introduction to this exciting new area with a large collection of illuminating examples and exercises.




Towards a Theory of Geometric Graphs


Book Description

This volume contains a collection of papers on graph theory, with the common theme that all the graph theoretical problems addressed are approached from a geometrical, rather than an abstract point of view. This is no accident; the editor selected these papers not as a comprehensive literature revie




Thirty Essays on Geometric Graph Theory


Book Description

In many applications of graph theory, graphs are regarded as geometric objects drawn in the plane or in some other surface. The traditional methods of "abstract" graph theory are often incapable of providing satisfactory answers to questions arising in such applications. In the past couple of decades, many powerful new combinatorial and topological techniques have been developed to tackle these problems. Today geometric graph theory is a burgeoning field with many striking results and appealing open questions. This contributed volume contains thirty original survey and research papers on important recent developments in geometric graph theory. The contributions were thoroughly reviewed and written by excellent researchers in this field.




Geometric Graphs and Arrangements


Book Description

Among the intuitively appealing aspects of graph theory is its close connection to drawings and geometry. The development of computer technology has become a source of motivation to reconsider these connections, in particular geometric graphs are emerging as a new subfield of graph theory. Arrangements of points and lines are the objects for many challenging problems and surprising solutions in combinatorial geometry. The book is a collection of beautiful and partly very recent results from the intersection of geometry, graph theory and combinatorics.




Random Geometric Graphs


Book Description

This monograph provides and explains the mathematics behind geometric graph theory. Applications of this theory are used on the study of neural networks, spread of disease, astrophysics and spatial statistics.




Handbook of Discrete and Computational Geometry


Book Description

The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in fields as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed significantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young field of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.




Analysis and Geometry on Graphs and Manifolds


Book Description

The interplay of geometry, spectral theory and stochastics has a long and fruitful history, and is the driving force behind many developments in modern mathematics. Bringing together contributions from a 2017 conference at the University of Potsdam, this volume focuses on global effects of local properties. Exploring the similarities and differences between the discrete and the continuous settings is of great interest to both researchers and graduate students in geometric analysis. The range of survey articles presented in this volume give an expository overview of various topics, including curvature, the effects of geometry on the spectrum, geometric group theory, and spectral theory of Laplacian and Schrödinger operators. Also included are shorter articles focusing on specific techniques and problems, allowing the reader to get to the heart of several key topics.




Erdös Centennial


Book Description

Paul Erdös was one of the most influential mathematicians of the twentieth century, whose work in number theory, combinatorics, set theory, analysis, and other branches of mathematics has determined the development of large areas of these fields. In 1999, a conference was organized to survey his work, his contributions to mathematics, and the far-reaching impact of his work on many branches of mathematics. On the 100th anniversary of his birth, this volume undertakes the almost impossible task to describe the ways in which problems raised by him and topics initiated by him (indeed, whole branches of mathematics) continue to flourish. Written by outstanding researchers in these areas, these papers include extensive surveys of classical results as well as of new developments.




More Sets, Graphs and Numbers


Book Description

This volume honours the eminent mathematicians Vera Sos and Andras Hajnal. The book includes survey articles reviewing classical theorems, as well as new, state-of-the-art results. Also presented are cutting edge expository research papers with new theorems and proofs in the area of the classical Hungarian subjects, like extremal combinatorics, colorings, combinatorial number theory, etc. The open problems and the latest results in the papers are sure to inspire further research.




Geometric Set Theory


Book Description

This book introduces a new research direction in set theory: the study of models of set theory with respect to their extensional overlap or disagreement. In Part I, the method is applied to isolate new distinctions between Borel equivalence relations. Part II contains applications to independence results in Zermelo–Fraenkel set theory without Axiom of Choice. The method makes it possible to classify in great detail various paradoxical objects obtained using the Axiom of Choice; the classifying criterion is a ZF-provable implication between the existence of such objects. The book considers a broad spectrum of objects from analysis, algebra, and combinatorics: ultrafilters, Hamel bases, transcendence bases, colorings of Borel graphs, discontinuous homomorphisms between Polish groups, and many more. The topic is nearly inexhaustible in its variety, and many directions invite further investigation.